
Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds. I

TTHHEE IINNTTEERRNNAATTIIOONNAALL WWOORRKKSSHHOOPP OONN
AAPPPPLLIIEEDD MMOODDEELLIINNGG && SSIIMMUULLAATTIIOONN

SEPTEMBER 24-27 2012
ROME, ITALY

EDITED BY
AGOSTINO G. BRUZZONE

WAYNE BUCK
ERDAL CAYIRCI

FRANCESCO LONGO

PRINTED IN RENDE (CS), ITALY, SEPTEMBER 2012

ISBN 978-88-97999-06-5 (paperback)
ISBN 978-88-9799-07-2 (PDF)

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds. II

© 2012 DIME UNIVERSITÀ DI GENOVA

RESPONSIBILITY FOR THE ACCURACY OF ALL STATEMENTS IN EACH PAPER RESTS SOLELY WITH THE AUTHOR(S). STATEMENTS
ARE NOT NECESSARILY REPRESENTATIVE OF NOR ENDORSED BY THE DIME, UNIVERSITY OF GENOA. PERMISSION IS GRANTED
TO PHOTOCOPY PORTIONS OF THE PUBLICATION FOR PERSONAL USE AND FOR THE USE OF STUDENTS PROVIDING CREDIT IS
GIVEN TO THE CONFERENCES AND PUBLICATION. PERMISSION DOES NOT EXTEND TO OTHER TYPES OF REPRODUCTION NOR TO
COPYING FOR INCORPORATION INTO COMMERCIAL ADVERTISING NOR FOR ANY OTHER PROFIT – MAKING PURPOSE. OTHER
PUBLICATIONS ARE ENCOURAGED TO INCLUDE 300 TO 500 WORD ABSTRACTS OR EXCERPTS FROM ANY PAPER CONTAINED IN
THIS BOOK, PROVIDED CREDITS ARE GIVEN TO THE AUTHOR(S) AND THE WORKSHOP.

FOR PERMISSION TO PUBLISH A COMPLETE PAPER WRITE TO: DIME UNIVERSITY OF GENOA, PROF. AGOSTINO BRUZZONE,
VIA OPERA PIA 15, 16145 GENOVA, ITALY. ADDITIONAL COPIES OF THE PROCEEDINGS OF THE WAMS ARE AVAILABLE
FROM DIME UNIVERSITY OF GENOA, PROF. AGOSTINO BRUZZONE, VIA OPERA PIA 15, 16145 GENOVA, ITALY.

ISBN 978-88-97999-06-5 (paperback)
ISBN 978-88-9799-07-2 (PDF)

UML MODELLING AND CODE GENERATION
 FOR AGENT-BASED, DISCRETE EVENTS SIMULATION

Giovanni A. Cignoni(a), Stefano Paci(b)

(a)Dipartimento di Informatica, Università di Pisa
(b)Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze

(a)cignoni@di.unipi.it, (b)n efasto.cipa@yahoo.it

ABSTRACT
GeneSim is an open-source research project about soft-
ware simulation of dynamic systems. The project fo-
cuses on UML as modelling language and on automated
tools to generate the simulator from the UML model.
This paper presents an implementation of this approach
applied to Agent-based Discrete Event simulation. The
system to be simulated is described by a set of UML
diagrams which specifies an object-oriented model of
the system. From such UML model it is possible to de-
rive C++ source code by applying a set of defined code
generation patterns. A C++ library provides the runtime
environment that, compiled and linked with the gener-
ated code, results in the executable system simulator.
The code generation process can be automatized: the
UML diagrams are encoded in XML documents which
are readable by an ad hoc compiler that uses XSLT
transformations to actually generate the C++ code.

Keywords: UML, agent-based simulation, discrete
event simulation, code generation.

1. INTRODUCTION
Advantages of system modelling and simulation are
today well recognized (Thesen and Travis 1989).
Thanks to the continuous improvement of software and
hardware technologies, the practice of software simula-
tion is constantly growing.

In a software model, each element of the system is
represented by a data structure (a variable, an array, an
abstract data type...), so the software simulator also
mimics the structure the real system. The running simu-
lation program dynamically evolves through a defined
sequence of states as does the real system.

The system evolution may be modelled by consid-
ering only the discrete points in time – the events –
when relevant changes occur (Sánchez 2007). While
general, the discrete-event modelling approach is
particularly well suited for simulation of manufacturing
systems, transportation and communication networks,
information processing systems and queuing systems
(Schriber and Brunner 2007).

An agent is an identifiable component of the sys-
tem capable to make decisions. An agent has a set of
characteristics and rules which determine its behaviour.

Agent-based modelling is an approach to simulation,
generally used for systems suitable to be modelled using
a continue time representation (Macal and North 2008).

GeneSim (Cignoni 2006) is an open-source re-
search project about software simulation of dynamic
systems. The project focuses on UML as modelling lan-
guage and on automated tools to generate the simulator
from the UML model of the system. The GeneSim
modelling and simulation technique follows an Agent-
based Discrete Events (ADE) approach.

We use UML to specify an object-oriented model
of the system. In particular, the model is specified by
UML class diagrams, object diagrams, state machine
diagrams, and activity diagrams. Our technique defines
the rules to build a complete model of the system, that
is, a model that includes all the information needed to
generate the simulator.

To actually generate the simulator, the UML model
is encoded in XML respecting the syntax defined by a
set of XML schemas. In such format the model is given
as input to the compiler that generates the C++ source
code of the simulator via XSLT transformations. The
C++ code compiled and linked to a runtime library res-
ults in a ready-to-run simulator.

Our framework is suitable to be used for all those
typical discrete-event simulation applications. Experi-
ments were already carried out on real case studies in-
volving public transportation networks (see section 6).

In Section 2 we resume the reference context of
discrete event modelling and simulation. The GeneSim
approach to ADE simulation is introduced in Section 3.
In Section 4 we discuss a simple case study in order to
introduce our UML notation. The code generation pro-
cess is shown in Section 5. In Section 6 we present the
case studies used to validate the framework.

2. DISCRETE EVENT SIMULATION
In order to understand the characteristics of the GeneS-
im approach we briefly summarize some classics of dis-
crete event simulation.

Discrete Event systems Specification (DEVS), as
proposed by Zeigler (1976), is a modelling formalism
that has been used in many fields, ranging from parallel
computing (Liu and Wainer 2010) to peer-to-peer net-
work systems (Cheon, Seo, Park and Zeigler 2004) and,

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 50

mailto:mail@uni.edu

of course, simulation. A DEVS model is built by coup-
ling several components known as atomic models. Each
atomic model has a set of states and transition functions
which describe its behaviour. Complex components are
obtained by coupling atomic ones. This assembling
technique helps the reuse of the model components
(MacSween and Wainer, 2004).

As discussed by Pidd, Oses and Brooks (1999), a
relevant DEVS issue is complexity. In fact, it is com-
mon to end with a model where each atomic model is
coupled with almost every other, often resulting in un-
manageable chains of dependencies.

Starting from the requirements defined by Nance
(1977) and Sargent (1992) for a “next-generation mod-
elling framework”, Page (1994) claims that the DEVS-
based approaches are able to describe systems only at
low level. Page argues that DEVS has limited express-
iveness, and lacks of traceability of the real system ele-
ments in the model components.

Hills and Poole (1969) described one of the first
graphical notations for simulation: the activity cycle
diagrams (ACD). Using this notation, the modeller is
able to describe the system from different perspectives
and to identify the entities that populate the system.

Modelling methods which use the ACD notation
aim to describe the behaviour of the whole system as a
sequence of operations that have to be atomized as ana-
lysis is refined. Each atomic operation, called activity,
represents the consequences of a change of state in the
system. Activities are linked together in a diagram
which contains all the entities in the system.

One of the strengths of the ACD notation is its dif-
fusion: it is long since it has been used as front-end for
simulator generators and interpreters, like, for example,
GASSNOL (Vidallon, 1980). Filho and Hirata (2004)
also present an automatic translation from an extended
ACD to a Java program. However, as Page already ob-
served (1994), is not unusual that the code generated by
these tools, in order to be actually executable, must be
manually edited by the user. Moreover, modelling a
system with ACD often results in a set of entities heav-
ily-dependent on each other. As stated by Overstreet
and Nance (1985) the resulting diagrams fail to repres-
ent the conceptual model of the system.

At run time the activities are stored in a table. The
management cost of the activity table is yet another
flaw of the simulation based on ACD. For this reason,
Pidd (1992a, 1992b) suggested an optimization, called
three phase approach, which also partially reduces de-
pendencies among the entities of the system. However,
the ACD model is still seen as a whole and its compon-
ents are not truly independent. The behaviour of an en-
tity can not be localized: it must be seen in the “great
picture” of the system. Hence, many parts of the model
are not reusable as is in other simulation projects.

As emerges from the above – pretty historical –
summary of Discrete Event Modelling and Simulation,
we can consider re-usability, traceability and independ-
ence of model components as three quality goals which
had always driven the research, in particular they are the

main objectives of our approach to ADE modelling and
simulation.

3. GENESIM APPROACH
As model quality requirements, re-usability, traceability
and independence are shared with other approaches to
simulation. In particular, agent-based modelling sets the
independence of the components as one of its starting
assumptions (Macal and North, 2008).

The object-oriented (OO) paradigm can be ex-
ploited to enhance the traceability of the model com-
ponents through different abstraction levels, even down
to the source code of the simulator. OO paradigm is also
suitable to introduce reuse mechanisms – like inherit-
ance – in the modelling technique. SIMULA (Dahl and
Nygaard, 1966) was a recognized forerunner in using
the OO paradigm for the purposes of simulation.

In this section we introduce our approach to object
oriented, agent-based, discrete event modelling and
simulation. We then discuss how this approach is imple-
mented in our framework.

3.1. An Object-oriented Agent-based Model
As defined by Macal and North (2008), an agent is an
identifiable, individual component of the system that is
capable to make decisions. An agent has a set of charac-
teristics and rules which determine its own behaviour,
therefore in the agent-based approach there is not a
centralized management of the state of the system. In
our ADE context, an agent can be considered as an en-
tity that independently reacts to events.

According to the OO paradigm, we distinguish be-
tween entity types (classes in the OO terminology) and
entity instances (objects). Each type defines a set of at-
tributes (characteristics) and methods (rules). By inher-
itance it is possible to specialise previously defined en-
tity types to reuse them in different models.

An entity type is active if it reacts to events. A
state machine can be used to specify how each entity in-
stance of a given active type reacts to events by chan-
ging its internal state. As part of the definition of an en-
tity type, the state machine can be inherited from a su-
perclass or overridden by subclasses. An agent is an in-
stance of an active entity type.

Passive entity types are also defined as, in practice,
they may be useful to represent data structures. Passive
entity instances does not react to events, however they
are still able to interact with other model components.

3.2. Discrete Events
According to classic discrete-event modelling, events
are the points in time in which the system state changes.
In our approach we see events as facts that happen at
given instants and cause changes in the state of agents.
This perspective makes possible to:

• separately identify facts that happen at the
same instant and select them in priority order;

• let the events be managed by the only agents
actually affected by them;

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 51

• consider the system state as composition of the
states of its entities.

As for entities, there are event types and event in-
stances. Event types are referred by the state machines
which specify the behaviour of entity types, while dur-
ing the simulation actual agents react to event instances.

Each event instance needs to know which agents
have to handle it, and in what order. There is no event
dispatcher or centralized event-dispatching algorithm:
our approach introduces self-dispatching events. That is,
like entity instances, also event instances are independe-
nt components of the system with their own dispatching
behaviour. From this perspective, our approach is fur-
ther characterised as agent-based.

Event instances are usually scheduled dynamically
as part of the behaviour of the agents. Events instances
may also be part of the model, for instance to specify
the initial events needed to start the simulation.

Figure 1: Generic Software Architecture of a Simulator

3.3. Simulation Environment
Fig.1 is an UML package diagram representing the gen-
eral architecture of a software simulator. As the diagram
shows, modelling a system in a given software simula-
tion framework depends on the library components: the
modeller must usually be aware of features and charac-
teristics of the runtime platform.

In our environment the simulation engine and the
utility tools are provided by the GS_DSLibs C++ run-
time library. The simulation engine is an event agenda,
which does – conceptually – a very simple work:

1. advances the current time to next event;
2. triggers all the events that are scheduled at the

current time;
3. repeat from 1 until no scheduled events are

present in the agenda.

When events are scheduled at the same time, they
are triggered in priority order, which is an optional at-
tribute for every derived event class. Once triggered, an
event instance follows its own dispatching behaviour to
interact with its handling agents.

The GS_DSLibs engine package provides other
features like the ability to withdraw events previously
scheduled in the agenda. This can be useful in many

practical situations involving behaviour branches, for
instance the management of time-out events.

The GS_DSLibs tools package includes utility
classes for simulation: data structures like queues and
sets and pseudo-random number generators for several
statistical distributions.

The third package of the general architecture of a
software simulator is the implementation of the model
of the system. In our environment this is the actual part
needed in order to generate the simulator.

In many simulation environments the implementa-
tion of the model is just a collection of data suitable to
be interpreted on the fly by an ad hoc engine. In our ap-
proach the implementation of the model is obtained dir-
ectly from its UML specification which includes the en-
tity and event types, and the initial set of their instances
that determines the state of the system when the simula-
tion starts.

In order to model a system there is no need of a
deep knowledge of the GS_DSLibs library packages:
the links with the runtime components are discreetly
managed by the code generator when it compiles the
UML model.

4. UML
In this section we introduce the UML notations that are
used for ADE modelling in our approach. The presenta-
tion follows a simple case study.

4.1. Using UML in the Simulation Process
The case study is presented by introducing the diagrams
that make up the final model. This “waterfall” presenta-
tion does not match the practice of modelling. Gener-
ally, the model diagrams are refined through successive
iterations of analysis steps.

During these iterations, the modeller may use
UML in different ways. Fowler (2003) described three
levels of using UML: sketch, blueprint and program.

Sketch is typical in the early phases of the analysis,
when the general choices of the model are discussed.
Diagrams at the blueprint-level are aimed to forward
engineering, that is, to build a detailed design of the
model before implementing it. These UML practices,
while originated for software engineering, well apply
also to system modelling for simulation.

As far as design decisions, a blueprint model is
complete, but is not sufficient to fully specify the model
for the simulator generation: it has to be integrated with
some source code. For instance, we might need to spe-
cify methods that detail the “nuts and bits” of the beha-
viour of agents and events. Here is where other tech-
niques rely on manual code completion. Our method
permits to complete the model diagrams still using the
UML syntax at the program-level.

In this section we present the diagrams at the blue-
print-level, an example of a complete program-level
diagram will be shown in section 5.

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 52

4.2. Description of the System
As a case study we use the Harassed Clerk example
first proposed by Pidd (1992b). The system involves a
clerk and two kinds of clients: those arriving at the ser-
vice desk, and those calling on the phone. The system is
described as follows:

1. there is only one clerk in the system, serving
one client at a time;

2. arriving (or calling) clients that find the clerk
busy wait in two first-in-first-out queues, one
for each client type;

3. each client (of both types) is characterized by
its arrival time and its service time;

4. queues have no length limits;
5. the clerk works without interruptions;
6. desk clients have higher priority;
7. the clients wait until they are served, no matter

how much time it requires.

4.3. Identifying the Entities
There are three entity types: the clerk, the desk client
and the phone client. There is just one clerk agent and
an undetermined number of client agents, of both types.

We consider all entity types as active entities: their
instances will react to events. Therefore, we build a hi-
erarchy of classes all deriving from the root library class
ActiveEntity.

Figure 2: Classes of System Agents, Blueprint-level

The class specification introduces the attributes
whose values will characterize the agents during the
simulation. Few methods are introduced to improve
readability of the transition arcs of the state machine
diagrams (see Section 4.6). In fig. 2 we can observe:

• Client has two Time attributes to specify ar-
rival time and service time;

• the Client class cannot be instantiated, because
queue is pure virtual, and its model does not
include a state machine (see Section 4.6);

• both PClient and DClient have a constructor
method which takes two Time arguments (ar-
rival time and service time) and calls the con-
structor of the Client parent class; the Clerk
constructor has no parameters;

• both PClient and DClient have a static Queue*
attribute to refer their own queues; Clerk has
static references to both the queues;

• Client has a method for queuing, while Clerk
has one to implement the serving procedure;

• Clerk has two methods that implement the pri-
ority policy, mustServeP and mustServeD.

The arrT and srvT attributes are random variables:
according to proper distributions, they get different val-
ues for each Client agent. The implementation of ran-
dom variables is provided by the GS_DSLibs runtime
library, however we will not discuss the details here.

Every active entity class must have (or inherit) an
handle(Event*) method that specify how its agents react
to event instances. In our approach the handle method is
specified by a state machine diagram associated to each
active entity class (see Section 4.6).

Figure 3: Classes of System Events, Blueprint-level

4.4. Identifying the Events
There are three event types:

• arrival of a client, which starts the life of a
new DClient and, depending on the state of the
clerk (busy or not), may start a service or a
wait in the desk client queue;

• client call request, which starts the life of a
new PClient and, depending on the state of the
clerk (busy or not), may start a service or a
wait in the phone client queue;

• end of a service, which ends the life of a desk
or phone client and, depending on the state of

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 53

the queues (empty or not), may let the clerk go
idle or serve another client.

As shown in Fig. 3, each event has two attributes: a
static pointer to the only Clerk instance in the system,
and a pointer to the Client agent the event relates to.

The Event subclasses must implement the doAc-
tion() method, which is modelled by an activity diagram
(see Section 4.5). The purpose of doAction() is to spe-
cify how the event will be dispatched to the agents that
have to handle it. The doAction() method call, done by
the simulator engine, starts the event triggering.

The Event root library class defines two attributes,
time and priority, needed by the engine to order the
events in the agenda. In our case study, the values of
time and priority are set by the constructors of the sub-
classes. For instance, ClientArrival sets its time value
equal to the arrT attribute (see Fig. 2) of the DClient ar-
gument of the constructor.

4.5. Linking Events to Agents
As shown in Fig. 4, we use UML activity diagrams to
specify the dispatching behaviour of events. In practice,
the activity diagram describes the algorithm used to call
the handle(Event*) methods of the agents affected by
the event. This mechanism assures that only these
agents are involved in the handling of a specific event
and in the right order.

Figure 4: Event Self-dispatching

In this case study we have very simple doAction()
methods. Using activity diagrams to specify a mere se-
quence seems overkilling. However, activity diagrams
are useful in those cases where there is need to express
more complex algorithms. For instance when the agent
that has to manage an event must be chosen among a set
of available ones by applying a given policy.

Note that for ClientCall and ClientArrival, the se-
quence specified by the activity diagrams is relevant:
these events must be handled first by the Client agent,
in this way it is ready to be popped from the queue by
the Clerk agent (if idle, see Fig. 5, Fig. 6 and Fig. 7).

4.6. Specifying How Agents React to Events
The model of an entity type includes a state machine
diagram to specify handle(Event*), that is, how an agent

of that type, depending on its current state and custom
conditions, reacts to events performing actions and,
maybe, going in a different state.

In our case study, the DClient and PClient state
machines have three states (see Fig. 5 and Fig. 6): ar-
riving (or dialing for PClient), inService, and served.
Note that, in order to be minimal, inService merges two
different conditions: the client waiting its turn and the
client being actually served.

Figure 5: DClient Behaviour

Figure 6: PClient Behaviour

As shown in Fig. 5 arriving is marked as the initial
state: a DClient agent is created in this state; served is
marked as the final state: as a DClient enters this state it
is destroyed. Our UML notation consider start and final
icons as labels instead of states. As a consequence the
linked transitions are completion transition as defined
by OMG (2011). This notation choice ables the sound
interpretation of diagrams by the code generator.

Figure 7: Clerk Behaviour

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 54

A DClient stays in the initial state until a ClientAr-
rival event happens: at that time the DClient agent per-
forms the associated action and goes in the inService
state. It reaches its served final state when, being in the
inService state, its EndService event happens. The PCli-
ent state machine diagram in Fig. 6 is similar.

A Clerk agent (see Fig. 7) starts idle. When a Cli-
entArrival (or ClientCall) happens it calls the serve
method and goes working. While working, when an
EndService happens the clerk evaluates its policy: if
mustServeP() is true the clerk serves the phone queue, if
mustServeD() is true it serves the desk queue; if both are
false, it turns back idle. By definition, the two condi-
tions will never be both true (see Section 5).

4.7. Initial State of the System
Before the simulation starts the system must be initial-
ized: some agents have to be created, and some events
must be scheduled in the agenda.

The initial state is specified by two UML object
diagrams: one contains those object that must be created
in every simulation, while the other is needed to specify
how a particular simulation is initialized.

Figure 8: Initial State, Static Objects

The diagram in Fig. 8 shows the initializations that
must be performed before every simulation starts. There
is a Clerk agent and two Queue objects, which are
stored as static attributes of the five classes of the mod-
el. The dependencies in the diagram mean that the
Clerk class static references to the Queue objects must
be set after the creation of the queues. The Event classes
have to set their Clerk static pointer after the construc-
tion of the Clerk agent, as expected.

Our system consists of four Client agents and the
initial agenda contains two instances of ClientArrival
and two instances of ClientCall (see Fig. 9). This last
diagram may differ in every simulation experiment, as
the user may want to observe different client sequences.

When large numbers of transient objects are in-
volved, it is convenient to model and implement agents
which play as event/agent generators. On the other
hand, a diagram as the one depicted in Fig. 9 is typical
for validation purposes: simple configurations are need-
ed to test the model using ad hoc initial states which
produce a predictable output.

Figure 9: Initial State, Transient Objects

4.8. The Project Diagram
The project diagram is an index of the whole model,
needed to give structure to all the specification.

It is an UML object diagram (see Fig. 10) contain-
ing the packages for entities and events. Inside those
packages we distinguish between elements that specify
either the structure or the behaviour of an entity or an
event. A third packages is the system initial state, which
includes the diagrams described in section 4.7.

Figure 10: Project Diagram

4.9. Well-formed Models
In this section we propose a definition of “well-formed
model”. This definition is exploited by the code gener-
ator to perform consistency checks on the model.

A model can be defined in set-theoretic terms as:

M=<A,E,B,D,O,P>,

where:

• A is a set of agent types (class diagrams),
• E is a set of event types (class diagrams),

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 55

• B is a set of agent behaviour specifications
(state machine diagrams),

• D is a set of event dispatching specifications
(activity diagrams),

• O is a set of object diagrams,
• P is a set of project diagrams.

Definition: Let a,b∈A, we say that a inherits from
b, and write a→b, if a is a diagram of a subtype of b.
We say that a is a child of b, and b is a parent of a.

The definition also applies to the elements of E.
Definition: Let A be a subset of A, and aM ∈A, we

define aM as a maximum element in A if
¬∃ a∈A : aM→ a,

Definition: am ∈A is a minimum in A if
¬∃ a∈A :a→ am .

Definition: Let A be a subset of A, not empty. A is
defined as a hierarchy-connected set (hc set) if A has a
maximum aM and
∀ a∈A -{aM} : ∃ b∈A: a→ b.

Definition: A ⊂ A, A an hc set. A is a linear set if
∃!am ∈A minimum for A.

The definitions of hc set and linear set can be easil-
y extended to subsets of E.

Definition: Let b∈B and a∈ A . We say that b is
associated to a, and write bµ a, if b is the behaviour of
a. Let d∈D, and e∈E, We say that d is associated to e,
and write dµ e, if d specifies the dispatching of e.

Definition: Let d∈D and e∈E, dµ e. We define the
handler set of d, and write h(d), as a subset of A such
that ∀a∈h(d), a is the diagram of the entity type of an
handler of the event e.

Definition: b∈B, a∈A, bµ a, we define the han-
dled set of b, written H(b), as a subset of E such that
∀ e∈H(b), a∈h(d) where dµ e.

The definition of handler set and handled set
should be extended to cover those cases where an entity
a, included in h(d), does not define a state machine. In
this case is correct to include the event e (such that dµ e)
in the handled set of the behaviours of the children of a.

Definition: Let M be a model. M is well-formed if

• All A,E,B,D,O,P are not empty
• #O =2
• #P =1
• ∀ b∈B : ∃! a∈ A : bµ a
• ∀ d∈D :∃! e∈E : dµ e
• ∀A⊂A linear hc set, ∃ b∈B: ∃ a∈Α, bµ a
• ∀E⊂E linear hc set, ∃ d∈D : ∃ e∈E, dµ e
• ∀b∈B, ∀e∈H(b),if bµ a and dµ e, then a∈h(d)
• all the entity and event types used in the dia-

grams of O must be defined in A,E,B,D.

5. CODE GENERATION
The ADE simulation framework includes a prototypical
code generator, GS_ADECodeGen. The generator ex-
pects the diagrams to be encoded in a given XML for-
mat. The resultant C++ project is ready to be compiled,
without further editing of the code, and retains the
modular structure of the UML model. The intervention
in the generated code is avoided because is possible to
include the few really needed lines of C++ code in the
UML model, as we discuss in this section.

After an overview of the code generation process
(Section 5.1) we present a completed program-level dia-
gram (Section 5.2), the XML encoding of the PClient
class and state machine diagrams (Section 5.3) and the
corresponding C++ code (Section 5.4).

5.1. The Code Generation Process
The development of a simulator using the ADE method
is an example of model-driven programming. As stated
by Sarkar (2002), XML/XSLT-based source code gen-
eration is a convenient paradigm, much simpler to use
than Compiler-Compilers tools.

The UML diagrams and their XML encoding are
two equivalent ways to specify the model, one is the hu-
man readable graphical form, the other is needed to feed
the code generator.

The XML Schemas and Stylesheets are fixed in-
puts in the generation process. To parse and manipulate
the XML documents we use the DOM interface provid-
ed by the Xerces library. Before the transformation, we
need to check the model for semantic errors, and per-
form some manipulation (like merging structure and be-
haviour diagrams). The transformation process uses the
Xalan library. Xerces and Xalan are open source pro-
jects developed by the Apache Foundation (1999).

Figure 11: Code Generation Process

5.2. Completing the Diagrams
In order to generate the code, the blueprint-level UML
model has to be completed to program-level. Our UML

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 56

notation provide the conventions needed to integrate the
missing code in the diagrams.

Fig. 12 shows a program-level version of the entity
diagram in Fig. 2. The needed C++ code is included in
comment boxes associated to the methods definition:
Clerk::serve(Queue*) pops a client from the queue and
schedule an EndService event. To schedule an event,
each class derived from ActiveEntity inherits the sched-
ule(Event*) method, which adds an event to the agenda.
The PClient and DClient constructors use the parent
stereotype, which indicates the superclass method call.

Figure 12: Classes of System Agents, Program-level

5.3. XML Encoding
In the following we show two excerpts of the XML files
which encode the UML model of the case study. In par-
ticular, we present the XML encoding of the class and
state machine diagrams for the PClient entity type.

In order to highlight the equivalence between the
UML format and its XML encoding, the bold typeface
is used to refer the XML code directly derived from the
UML diagrams. Plain typeface is used for the needed
XML syntax “glue”.

5.3.1. PClient Entity Diagram
In the following we present the XML encoding of the
PClient class diagram (see Fig. 12).

<entity name="PClient">
<relationship type="generalization">

<class name="Client"/>
</relationship>
<encapsulation type="public">
<attribute name="pQ" type="GS_Queue*"

static="true" default="NULL"/>

<method name="queue" type="void">
<body text="pQ->pushLast(this);"/>

</method>
<method name="PClient" type="">

<parentmethod name="Client">
<parameter name="aT"/>
<parameter name="sT"/>
</parentmethod>
<parameter name="aT" type="GS_Time"/>
<parameter name="sT" type="GS_Time"/>
<body text=""/>

</method>
</encapsulation>
</entity>

Methods and attributes are collected by encapsula-
tion, as we are used to see in C++ header files. The in-
heritance relationship of PClient from Client is expli-
citly encoded as well it is the inheritance of Client from
ActiveEntity, which implies that all its subclasses are
active entities.

5.3.2. PClient State Machine Diagram
In the following we present the XML encoding of the
PClient state machine diagram (see Fig. 6).

<StateChart activeEntityId="PClient">
<state id="dialing" type="initial">

<transition nextState="inService"
 event="ClientCall"

 action="queue()"/>
</state>
<state id="inService" type="regular">

<transition nextState="served"
 event="EndService"/>

</state>
<state id="served" type="final"/>

</StateChart>

5.4. C++ Code
In this section we show an examples of generated C++
code. In particular, we present the PClient sources.
They are organized in one header file (.hpp) and one
implementation file (.ccp).

In order to reveal some details of the generation
process, the code that is obtained by verbatim replica-
tion of information already explicit in the XML encod-
ing of the UML model is rendered in bold typeface.
Plain typeface is used for the code added by application
of the code generation patterns.

5.4.1. PClient.hpp
In the following we present the generated header file of
the PClient class.

#include "../../../../GS_DSLibs-3.5b/
GS_EvEng/lib/GS_EvEng.hpp"

#include "Client.hpp"
class ClientArrival;
class ClientCall;
class Clerk;
class DClient;
class EndService;
#define PCLIENT_DIALING 1
#define PCLIENT_INSERVICE 2
#define PCLIENT_SERVED 3

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 57

class PClient : public Client {
private:

int state;
protected:

static GS_Queue* pQ;
void queue();

public:
 PClient(GS_Time aT,GS_Time sT);

virtual void handle(GS_Event* event);
static void setpQ(GS_Queue* arg);

};

The .hpp file contains all the definitions given in
the class diagram. The handle(Event*) method does not
appear in the class diagram: it is added because in the
model there is a state machine for PClient (see Fig. 10).
Still from diagrams are derived: the setter for the static
queue and the forward declarations of all the classes in
the model (Fig. 2 and 3), a private attribute state and the
defines for the identifiers of the entity states (Fig 6).

5.4.2. PClient.cpp
In the following we present the generated implementa-
tion file of the PClient class.

#include "PClient.hpp"
#include "../../../../GS_DSLibs-3.5b/

GS_EvEng/lib/GS_EvEng.hpp"
#include "ClientCall.hpp"
#include "ClientArrival.hpp"
#include "EndService.hpp"
#include "Clerk.hpp”
#include "DClient.hpp"
GS_Queue* PClient::pQ=NULL;

void PClient::queue(){
pQ->pushLast(this);

}

PClient::PClient(GS_Time aT,
 GS_Time sT): Client(aT,sT) {

state=PCLIENT_DIALING;
}

void PClient::setpQ(GS_Queue* arg) {
pQ=arg;

}

Note that in the constructor the generator added the
initialization of the state attribute, with the value of the
PCLIENT_DIALING initial state.

void PClient::handle(GS_Event* event) {
switch (state) {
case PCLIENT_DIALING:

if(event->getId()==CLIENTCALL) {
queue();
state=PCLIENT_INSERVICE;

}
break;
case PCLIENT_INSERVICE:

if(event->getId()==ENDSERVICE) {
state=PCLIENT_SERVED;

}
break;
case PCLIENT_SERVED:

delete this;
break;
default:

 cerr << "Error: undefined state.\n";
 }
}

The code of the handle method is derived follow-
ing a pattern from the state machine diagram:

• the switch-case construct is used to decide
what is the current state of the entity;

• if-then-else selects the transition evaluating
the specified guards;

• inside the body of the conditional branches is
executed the specified action and the actual
state transition.

6. EXPERIMENTAL USE AND FUTURE WORK
In this paper we presented the GeneSim approach to
ADE simulation of dynamic systems. To ease the
modelling process we exploit UML at different levels of
detail. Moreover, we provide an efficient and safe
transition from the UML model to the simulator (Paci
2011). The UML at its highest level of detail fully
specifies the system and can be used as input to a C++
code generator. The resulting source code can be com-
piled and linked to our runtime library to obtain the
simulator executable. Several components of this
framework has been validated in real case studies.

The UML notation and the code generation pat-
terns have been tested in a case study about the simula-
tion of a demand responsive public transport system.
The case study involved the province of Brescia and
MAIOR srl, a leader firm in Italy for transport manage-
ment software (Bertuccelli 2007, Gerardi 2007).

The runtime library has also been successfully
tested in a case study about the simulation of the public
bus service in La Spezia. The experiment was mainly
targeted to validate the performance on a real size
example: the transportation network counted 3071
vertices and 4300 links, the service schedule was made
of 112 routes and 3029 daily courses. Simulation of a
full day service required less than 1 sec on ordinary
hardware. Moreover, the experiment showed that times
are linear with the size of the service (Gervasi 2010,
Cignoni and Gervasi 2011). The case study involved
ATC Servizi Spa, the public company running the bus
service in La Spezia, and, again, MAIOR Srl.

Future development of the project will improve our
UML notation to explicit the scheduling of events. Fur-
thermore, we plan to introduce an UML notation to rep-
resent object construction, maybe inspired to normal
object form as proposed by Bunse and Atkinson (1999).

Another important development of the GeneSim
environment for ADE modelling and simulation will be
an UML editor capable of producing the XML encoding
of the model. This tool will be syntax-driven, and
should be developed together with further releases of
the generator (GS_ADECodeGen). Future release of the
code generator will also perform consistency checks on
the model, and produce error and warning messages that
would guide the user in the model building process.

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 58

REFERENCES
Bertuccelli, F., 2007. Interfacce di acquisizione e anal-

isi dati per la simulazione di sistemia di trasporto
pubblico a chiamata. Thesis (Bhc). Università di
Pisa.

Bunse, C. and Atkinson, C., 1999. The normal object
form: bridging the gap from models to code. Pro-
ceedings of the 2nd international conference on
The unified modelling language: beyond the
standard, pp. 675-690. Fort Collins (CO, USA).

Cheon, S., Seo, C., Park, S., and Zeigler, B. P., 2004.
Design and Implementation of Distributed DEVS
Simulation in a Peer to Peer Network System .
Proceedings of the 2004 Advanced Simulation
Technologies Conference - Design, Analysis, and
Simulation of Distributed Systems (ASTC'04).
April, Arlington (Virginia, USA).

Cignoni, G.A., 2006. GeneSim Project Website. Avail-
able at http://genesim.sourceforge.net [accessed 15
May 2012].

Cignoni, G.A., Gervasi, C., 2011. GS_DTLib: sim-
ulazione efficiente di sistemi di trasporto. Mobil-
ityLab 39.

Dahl, O. and Nygaard, K., 1966. SIMULA: an Algol-
based Simulation Language. Communication of
the ACM 9:671-678.

De Lara Araujo Filho, W. and Hirata, C.M., 2004.
Translating Activity Cycle Diagrams to Java
Simulation Programs. ANSS ’04 Proceedings of
the 37th annual symposium on Simulation, pp 157-
164. April 18-22, Washington, DC (USA).

Fowler, M., 2003. UML Distilled: A Brief Guide to the
Standard Object Modeling Language. 3rd ed. Ad-
dison-Wesley.

Gerardi, L., 2007. MAIOR e la ricerca scientifica al ser-
vizio del trasporto flessibile. MobilityLab 15.

Gervasi, C., 2010. Una libreria C++ per la simulazione
a eventi discreti di sistemi di trasporto. Thesis
(BSc). Università di Pisa.

Hills, B.R. and Poole, T.G., 1969. A Method for Simpli-
fying the Production of Computer Simulation
Models . TIMS Tenth American Meeting. October
1-3, Atlanta (Georgia, USA).

Liu, Q. and Wainer, G.A., 2010. Accelerating Large-s-
cale DEVS-based Simulation on the Cell Pro-
cessor. Proceedings of the 2010 Spring Simulation
Conference (SpringSim10), DEVS Symposium.
April, San Diego (California, USA).

Macal C.M. and North M.J., 2008. Agent-based model-
ling and simulation: ABMS examples. Proceed-
ings of the 2008 Winter Simulation Conference, pp
101-112. December 7-10, Miami (Florida, USA).

MacSween P. and Wainer, G. A., 2004. On the Con-
struction of Complex Models Using Reusable
Components. Proceedings of SISO Spring Simula-
tion Interoperability Workshop. Arlington
(Virginia, USA).

Nance, R. E., 1977. The Feasibility of and Methodology
for Developing Federal Documentation Standards
for Simulation Models. Final Report to the Nation-

al Bureau of Standards. Department of Computer
Science, Virginia Tech, Blacksburg, VA, June.

Object Management Group, 2011. OMG Unified Mod-
eling Language (OMG UML), Superstructure.
2.4.1.

Overstreet, C. M. and Nance, R. E., 1985. A specifica-
tion language to assist in analysis of discrete event
simulation model. Communications of the ACM
28: 190-201.

Paci, S., 2011. Da UML a C++. Modellazione e gen-
erazione di codice per la simulazione ad eventi
discreti. Thesis (BSc). Università degli Studi di Fi-
renze.

Page, E. H. Jr., 1994. Simulation modelling methodo-
logy: principles and etiology of decision support.
Thesis (Ph.D.). Virginia Polytechnic Institute and
State University.

Pidd, M., 1992a. Computer Simulation in Management
Science. John Wiley & Sons.

Pidd, M., 1992b. Object Orientation & Three Phase
Simulation. Proceedings of the 1992 Winter Simu-
lation Conference, pp. 689-693. December 13-16,
Arlington (Virginia, USA).

Pidd, M., Oses, N. and Brooks, R. J., 1999. Component-
based simulation on the Web? Proceedings of the
1999 Winter Simulation Conference, pp. 1438-
1444. December 5-8, Phoenix (Arizona, USA).

Sánchez, P.J., 2007. Fundamentals of simulation model-
ling Proceedings of the 2007 Winter Simulation
Conference, pp. 54-62. December 9-12, Washing-
ton, DC (USA).

Sargent, R.G., 1992. Requirements of a Modeling Para-
digm. Proceedings of the 1992 Winter Simulation
Conference, pp. 780-782. December 13-16, Ar-
lington (Virginia, USA).

Sarkar, S., 2002. Model-driven programming using
XSLT. XML Journal, SYS-CON Media, Inc.

Schriber, T.J. and Brunner, D.T., 2007. Inside discrete-
event simulation software: how IT works and why
IT matters. Proceedings of the 2007 Winter Simu-
lation Conference, pp. 113-123. December 9-12,
Washington, DC (USA).

The Apache Software Foundation. (1999) Apache Soft-
ware Foundation – Projects Website. Available at
http://projects.apche.org [accessed 15 May 2012].

Thesen, A., Travis, L. E., 1989. Simulation for de-
cision-making: an introduction. Proceedings of the
1989 Winter Simulation Conference, pp 9-18. De-
cember 4-6, Washington, DC (USA).

Vidallon C., 1980. GASSNOL: A computer subsystem
for the generation of network oriented languages
with syntax and semantic analysis. Simulation '80.
June 25-27, Interlaken (Switzerland).

Zeigler B.P., 1976. Theory of modelling and simulation.
John Wiley & Sons.

Proceedings of The International Workshop on Applied Modeling & Simulation, 2012
978-88-97999-07-2; Bruzzone, Buck, Cayirci, Longo, Eds.	 59

