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ABSTRACT
GeneSim is an open-source research project about soft-
ware  simulation of  dynamic  systems.  The project  fo-
cuses on UML as modelling language and on automated 
tools to generate the simulator from the UML model. 
This paper presents an implementation of this approach 
applied to  Agent-based Discrete Event simulation. The 
system to be simulated is described by a set of UML 
diagrams which specifies  an object-oriented model of 
the system. From such UML model it is possible to de-
rive C++ source code by applying a set of defined code 
generation patterns. A C++ library provides the runtime 
environment that, compiled and linked with the gener-
ated code,  results  in the executable system simulator. 
The code  generation  process  can  be  automatized:  the 
UML diagrams are encoded in XML documents which 
are  readable  by  an  ad  hoc  compiler  that  uses  XSLT 
transformations to actually generate the C++ code.

Keywords: UML, agent-based simulation, discrete 
event simulation, code generation.

1. INTRODUCTION
Advantages  of  system  modelling  and  simulation  are 
today  well  recognized  (Thesen  and  Travis  1989). 
Thanks to the continuous improvement of software and 
hardware technologies, the practice of software simula-
tion is constantly growing.

In a software model, each element of the system is 
represented by a data structure (a variable, an array, an 
abstract  data  type...),  so  the  software  simulator  also 
mimics the structure the real system. The running simu-
lation program dynamically evolves through a defined 
sequence of states as does the real system.

The system evolution may be modelled by consid-
ering  only  the  discrete  points  in  time –  the  events – 
when  relevant  changes  occur (Sánchez  2007).  While 
general,  the  discrete-event modelling  approach  is 
particularly well suited for simulation of manufacturing 
systems,  transportation  and  communication  networks, 
information  processing  systems  and  queuing  systems 
(Schriber and Brunner 2007).

An  agent is an identifiable component of the sys-
tem capable to make decisions. An agent has a set of 
characteristics and rules which determine its behaviour. 

Agent-based  modelling  is  an approach  to  simulation, 
generally used for systems suitable to be modelled using 
a continue time representation (Macal and North 2008).

GeneSim  (Cignoni  2006)  is  an  open-source  re-
search  project  about  software  simulation  of  dynamic 
systems. The project focuses on UML as modelling lan-
guage and on automated tools to generate the simulator 
from  the  UML  model  of  the  system.  The  GeneSim 
modelling and simulation technique follows an Agent-
based Discrete Events (ADE) approach. 

We use UML to specify an object-oriented model 
of the system. In particular,  the model is specified by 
UML class  diagrams,  object  diagrams,  state  machine 
diagrams, and activity diagrams. Our technique defines 
the rules to build a complete model of the system, that 
is, a model that includes all the information needed to 
generate the simulator. 

To actually generate the simulator, the UML model 
is encoded in XML respecting the syntax defined by a 
set of XML schemas. In such format the model is given 
as input to the compiler that generates the C++ source 
code of the simulator  via XSLT transformations.  The 
C++ code compiled and linked to a runtime library res-
ults in a ready-to-run simulator.

Our framework is suitable to be used for all those 
typical  discrete-event  simulation  applications.  Experi-
ments were already carried out on real case studies in-
volving public transportation networks (see section 6).

In Section 2 we resume the reference  context  of 
discrete event modelling and simulation. The GeneSim 
approach to ADE simulation is introduced in Section 3. 
In Section 4 we discuss a simple case study in order to 
introduce our UML notation. The code generation pro-
cess is shown in Section 5. In Section 6 we present the 
case studies used to validate the framework.

2. DISCRETE EVENT SIMULATION
In order to understand the characteristics of the GeneS-
im approach we briefly summarize some classics of dis-
crete event simulation.

Discrete  Event  systems  Specification  (DEVS),  as 
proposed by Zeigler (1976), is a modelling formalism 
that has been used in many fields, ranging from parallel 
computing (Liu and Wainer 2010) to peer-to-peer net-
work systems (Cheon, Seo, Park and Zeigler 2004) and, 
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of course, simulation. A DEVS model is built by coup-
ling several components known as atomic models. Each 
atomic model has a set of states and transition functions 
which describe its behaviour. Complex components are 
obtained  by  coupling  atomic  ones.  This  assembling 
technique  helps  the  reuse of  the  model  components 
(MacSween and Wainer, 2004).

As discussed by Pidd, Oses and Brooks (1999), a 
relevant DEVS issue is complexity. In fact, it is com-
mon to end with a model where each atomic model is 
coupled with almost every other, often resulting in un-
manageable chains of dependencies.

Starting from the requirements  defined by Nance 
(1977) and Sargent (1992) for a “next-generation mod-
elling framework”, Page (1994) claims that the DEVS-
based approaches are able to describe systems only at 
low level. Page argues that DEVS has limited express-
iveness, and lacks of traceability of the real system ele-
ments in the model components.

Hills and Poole (1969) described one of the first 
graphical  notations  for  simulation:  the  activity  cycle  
diagrams (ACD).  Using this notation, the modeller is 
able to describe the system from different perspectives 
and to identify the entities that populate the system.

Modelling methods which use the ACD notation 
aim to describe the behaviour of the whole system as a 
sequence of operations that have to be atomized as ana-
lysis is refined. Each atomic operation, called  activity, 
represents the consequences of a change of state in the 
system.  Activities  are  linked  together  in  a  diagram 
which contains all the entities in the system.

One of the strengths of the ACD notation is its dif-
fusion: it is long since it has been used as front-end for 
simulator generators and interpreters, like, for example, 
GASSNOL (Vidallon, 1980).  Filho and Hirata (2004) 
also present an automatic translation from an extended 
ACD to a Java program. However, as Page already ob-
served (1994), is not unusual that the code generated by 
these tools, in order to be actually executable, must be 
manually  edited  by  the  user.  Moreover,  modelling  a 
system with ACD often results in a set of entities heav-
ily-dependent  on  each  other.  As  stated  by  Overstreet 
and Nance (1985) the resulting diagrams fail to repres-
ent the conceptual model of the system.

At run time the activities are stored in a table. The 
management  cost  of  the  activity  table  is  yet  another 
flaw of the simulation based on ACD. For this reason, 
Pidd (1992a, 1992b) suggested an optimization, called 
three phase approach, which also partially reduces de-
pendencies among the entities of the system. However, 
the ACD model is still seen as a whole and its compon-
ents are not truly independent. The behaviour of an en-
tity can not be localized: it must be seen in the “great  
picture” of the system. Hence, many parts of the model 
are not reusable as is in other simulation projects.

As emerges  from the above – pretty  historical  – 
summary of Discrete Event Modelling and Simulation, 
we can consider re-usability, traceability and independ-
ence of model components as three quality goals which 
had always driven the research, in particular they are the 

main objectives of our approach to ADE modelling and 
simulation. 

3. GENESIM APPROACH
As model quality requirements, re-usability, traceability 
and independence are shared with other approaches to 
simulation. In particular, agent-based modelling sets the 
independence of the components as one of its starting 
assumptions (Macal and North, 2008). 

The  object-oriented  (OO)  paradigm  can  be  ex-
ploited to enhance  the traceability of  the model  com-
ponents through different abstraction levels, even down 
to the source code of the simulator. OO paradigm is also 
suitable to introduce reuse mechanisms – like inherit-
ance – in the modelling technique. SIMULA (Dahl and 
Nygaard,  1966) was a recognized forerunner in using 
the OO paradigm for the purposes of simulation.

In this section we introduce our approach to object 
oriented,  agent-based,  discrete  event  modelling  and 
simulation. We then discuss how this approach is imple-
mented in our framework.

3.1. An Object-oriented Agent-based Model
As defined by Macal and North (2008), an  agent is an 
identifiable, individual component of the system that is 
capable to make decisions. An agent has a set of charac-
teristics and rules which determine its own behaviour, 
therefore  in  the  agent-based  approach  there  is  not  a 
centralized management of the state of the system. In 
our ADE context, an agent can be considered as an en-
tity that independently reacts to events.

According to the OO paradigm, we distinguish be-
tween entity types (classes in the OO terminology) and 
entity instances (objects). Each type defines a set of at-
tributes (characteristics) and methods (rules). By inher-
itance it is possible to specialise previously defined en-
tity types to reuse them in different models.

An entity  type is  active if  it  reacts  to  events.  A 
state machine can be used to specify how each entity in-
stance of a given active type reacts to events by chan-
ging its internal state. As part of the definition of an en-
tity type, the state machine can be inherited from a su-
perclass or overridden by subclasses. An agent is an in-
stance of an active entity type.

Passive entity types are also defined as, in practice, 
they may be useful to represent data structures. Passive 
entity instances does not react to events, however they 
are still able to interact with other model components.

3.2. Discrete Events
According  to  classic  discrete-event  modelling,  events 
are the points in time in which the system state changes. 
In our approach we see events as  facts that happen at 
given instants and cause changes in the state of agents. 
This perspective makes possible to:

• separately  identify  facts  that  happen  at  the 
same instant and select them in priority order;

• let the events be managed by the only agents 
actually affected by them;
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• consider the system state as composition of the 
states of its entities.

As for entities, there are event  types and event in-
stances. Event types are referred by the state machines 
which specify the behaviour of entity types, while dur-
ing the simulation actual agents react to event instances. 

Each event instance needs to know which agents 
have to handle it, and in what order. There is no event 
dispatcher  or  centralized  event-dispatching  algorithm: 
our approach introduces self-dispatching events. That is, 
like entity instances, also event instances are independe-
nt components of the system with their own dispatching 
behaviour. From this perspective,  our approach is fur-
ther characterised as agent-based.

Event instances are usually scheduled dynamically 
as part of the behaviour of the agents. Events instances 
may also be part of the model, for instance to specify 
the initial events needed to start the simulation.

Figure 1: Generic Software Architecture of a Simulator

3.3. Simulation Environment
Fig.1 is an UML package diagram representing the gen-
eral architecture of a software simulator. As the diagram 
shows, modelling a system in a given software simula-
tion framework depends on the library components: the 
modeller must usually be aware of features and charac-
teristics of the runtime platform. 

In our environment the simulation engine and the 
utility  tools are provided by the  GS_DSLibs C++ run-
time library. The simulation engine is an event agenda, 
which does – conceptually – a very simple work:

1. advances the current time to next event;
2. triggers all the events that are scheduled at the 

current time;
3. repeat  from  1  until  no  scheduled  events  are 

present in the agenda.

When events are scheduled at the same time, they 
are triggered in priority order, which is an optional at-
tribute for every derived event class. Once triggered, an 
event instance follows its own dispatching behaviour to 
interact with its handling agents.

The  GS_DSLibs  engine  package  provides  other 
features like the ability to  withdraw events previously 
scheduled in  the agenda.  This can be useful  in  many 

practical  situations  involving  behaviour  branches,  for 
instance the management of time-out events.

The  GS_DSLibs  tools  package  includes  utility 
classes for simulation: data structures like queues and 
sets and pseudo-random number generators for several 
statistical distributions.

The third package of the general architecture of a 
software simulator is the implementation of the model 
of the system. In our environment this is the actual part 
needed  in order to generate the simulator.

In many simulation environments the implementa-
tion of the model is just a collection of data suitable to 
be interpreted on the fly by an ad hoc engine. In our ap-
proach the implementation of the model is obtained dir-
ectly from its UML specification which includes the en-
tity and event types, and the initial set of their instances 
that determines the state of the system when the simula-
tion starts.

In order to model a system there is no need of a 
deep  knowledge of  the  GS_DSLibs  library  packages: 
the  links  with  the  runtime  components  are  discreetly 
managed by the code generator  when it  compiles  the 
UML model.

4. UML
In this section we introduce the UML notations that are 
used for ADE modelling in our approach. The presenta-
tion follows a simple case study.

4.1. Using UML in the Simulation Process
The case study is presented by introducing the diagrams 
that make up the final model. This “waterfall” presenta-
tion does not match the practice of modelling. Gener-
ally, the model diagrams are refined through successive 
iterations of  analysis steps. 

During  these  iterations,  the  modeller  may  use 
UML in different ways. Fowler (2003) described three 
levels of using UML: sketch, blueprint and program. 

Sketch is typical in the early phases of the analysis, 
when the general  choices  of the model are discussed. 
Diagrams at  the blueprint-level  are aimed to  forward 
engineering,  that  is,  to  build a  detailed  design of  the 
model  before  implementing  it.  These  UML practices, 
while  originated  for  software  engineering,  well  apply 
also to system modelling for simulation.

As  far  as  design  decisions,  a  blueprint  model  is 
complete, but is not sufficient to fully specify the model 
for the simulator generation: it has to be integrated with 
some source code. For instance, we might need to spe-
cify methods that detail the “nuts and bits” of the beha-
viour of agents and events.  Here is where other tech-
niques  rely  on  manual  code  completion.  Our  method 
permits to complete the model diagrams still using the 
UML syntax at the program-level.

In this section we present the diagrams at the blue-
print-level,  an  example  of  a  complete  program-level 
diagram will be shown in section 5.
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4.2. Description of  the System
As a case  study we use the  Harassed Clerk example 
first proposed by Pidd (1992b).  The system involves a 
clerk and two kinds of clients: those arriving at the ser-
vice desk, and those calling on the phone. The system is 
described as follows:

1. there is only one clerk in the system, serving 
one client at a time;

2. arriving (or calling) clients that find the clerk 
busy wait in two first-in-first-out queues, one 
for each client type;

3. each client (of both types) is characterized by 
its arrival time and its service time;

4. queues have no length limits;
5. the clerk works without interruptions;
6. desk clients have higher priority; 
7. the clients wait until they are served, no matter 

how much time it requires.

4.3. Identifying the Entities
There are three entity types: the  clerk, the  desk client  
and the phone client. There is just one clerk agent and 
an undetermined number of client agents, of both types.

We consider all entity types as active entities: their 
instances will react to events. Therefore, we build a hi-
erarchy of classes all deriving from the root library class 
ActiveEntity.

Figure 2: Classes of System Agents, Blueprint-level

The  class  specification  introduces  the  attributes 
whose  values  will  characterize  the  agents  during  the 
simulation.  Few  methods  are  introduced  to  improve 
readability  of  the  transition arcs  of  the state  machine 
diagrams (see Section 4.6). In fig. 2 we can observe:

• Client has  two  Time attributes  to  specify  ar-
rival time and service time;

• the Client class cannot be instantiated, because 
queue is  pure virtual,  and its model does not 
include a state machine (see Section 4.6);

• both  PClient and  DClient have  a constructor 
method which takes two Time arguments (ar-
rival time and service time) and calls the con-
structor  of  the  Client parent  class;  the  Clerk 
constructor has no parameters;

• both PClient and DClient have a static Queue* 
attribute to refer their own queues;  Clerk has 
static references to both the queues;

• Client has a method for queuing, while  Clerk 
has one to implement the serving procedure;

• Clerk has two methods that implement the pri-
ority policy, mustServeP and mustServeD.

The arrT and srvT attributes are random variables: 
according to proper distributions, they get different val-
ues for each  Client agent. The implementation of ran-
dom variables is provided by the GS_DSLibs runtime 
library, however we will not discuss the details here.

Every active entity class must have (or inherit) an 
handle(Event*) method that specify how its agents react 
to event instances. In our approach the handle method is 
specified by a state machine diagram associated to each 
active entity class (see Section 4.6).

Figure 3: Classes of System Events, Blueprint-level

4.4. Identifying the Events
There are three event types:

• arrival  of  a  client,  which  starts  the life  of  a 
new DClient and, depending on the state of the 
clerk  (busy or  not),  may start  a  service  or  a 
wait in the desk client queue;

• client  call  request,  which  starts  the  life  of  a 
new PClient and, depending on the state of the 
clerk  (busy or  not),  may start  a  service  or  a 
wait in the phone client queue;

• end of a service, which ends the life of a desk 
or phone client and, depending on the state of 
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the queues (empty or not), may let the clerk go 
idle or serve another client.

As shown in Fig. 3, each event has two attributes: a 
static pointer to the only  Clerk instance in the system, 
and a pointer to the Client agent the event relates to.

The  Event subclasses  must  implement  the  doAc-
tion() method, which is modelled by an activity diagram 
(see Section 4.5). The purpose of  doAction()  is to spe-
cify how the event will be dispatched to the agents that 
have to handle it. The doAction() method call, done by 
the simulator engine, starts the event triggering.

The Event root library class defines two attributes, 
time and  priority, needed  by  the  engine  to  order  the 
events in the agenda. In our case study, the values of 
time and priority are set by the constructors of the sub-
classes.  For instance,  ClientArrival sets its  time value 
equal to the arrT attribute (see Fig. 2) of the DClient ar-
gument of the constructor.

4.5. Linking Events to Agents
As shown in Fig. 4, we use UML activity diagrams to 
specify the dispatching behaviour of events. In practice, 
the activity diagram describes the algorithm used to call 
the  handle(Event*) methods of the agents affected by 
the  event.  This  mechanism  assures  that  only  these 
agents are involved in the handling of a specific event 
and in the right order.

Figure 4: Event Self-dispatching

In this case study we have very simple doAction() 
methods. Using activity diagrams to specify a mere se-
quence seems overkilling. However,  activity diagrams 
are useful in those cases where there is need to express 
more complex algorithms. For instance when the agent 
that has to manage an event must be chosen among a set 
of available ones by applying a given policy.

Note that for  ClientCall  and ClientArrival, the se-
quence  specified  by the activity  diagrams is  relevant: 
these events must be handled first by the  Client agent, 
in this way it is ready to be popped from the queue by 
the Clerk agent (if idle, see Fig. 5, Fig. 6 and Fig. 7).

4.6. Specifying How Agents React to Events
The model of an entity type includes a state machine 
diagram to specify handle(Event*), that is, how an agent 

of that type, depending on its current state and custom 
conditions,  reacts  to  events  performing  actions  and, 
maybe, going in a different state.

In  our case  study,  the  DClient and  PClient state 
machines have three states (see Fig. 5 and Fig. 6):  ar-
riving  (or  dialing  for  PClient),  inService,  and  served. 
Note that, in order to be minimal, inService merges two 
different conditions: the client waiting its turn and the 
client being actually served.

 

Figure 5: DClient Behaviour

Figure 6: PClient Behaviour

As shown in Fig. 5 arriving is marked as the initial 
state: a  DClient agent is created in this state;  served is 
marked as the final state: as a DClient enters this state it 
is destroyed. Our UML notation consider start and final 
icons as labels instead of states. As a consequence the 
linked transitions are  completion transition  as defined 
by OMG (2011). This notation choice ables the sound 
interpretation of diagrams by the code generator.

Figure 7: Clerk Behaviour
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A DClient stays in the initial state until a ClientAr-
rival event happens: at that time the DClient agent per-
forms the associated action and goes in the  inService 
state. It reaches its served final state when, being in the 
inService state, its EndService event happens. The PCli-
ent state machine diagram in Fig. 6 is similar. 

A Clerk agent (see Fig. 7) starts idle. When a Cli-
entArrival  (or  ClientCall) happens  it  calls  the  serve 
method  and  goes  working.  While  working,  when  an 
EndService happens  the  clerk  evaluates  its  policy:  if 
mustServeP() is true the clerk serves the phone queue, if 
mustServeD() is true it serves the desk queue; if both are 
false,  it  turns back  idle.  By definition, the two condi-
tions will never be both true (see Section 5).

4.7. Initial State of the System
Before the simulation starts the system must be initial-
ized: some agents have to be created, and some events 
must be scheduled in the agenda.

The initial  state is  specified by two UML object 
diagrams: one contains those object that must be created 
in every simulation, while the other is needed to specify 
how a particular simulation is initialized.

Figure 8: Initial State, Static Objects

The diagram in Fig. 8 shows the initializations that 
must be performed before every simulation starts. There 
is  a  Clerk agent  and  two  Queue objects,  which  are 
stored as static attributes of the five classes of the mod-
el.  The  dependencies  in  the  diagram  mean  that  the 
Clerk class static references to the  Queue objects must 
be set after the creation of the queues. The Event classes 
have to set their  Clerk static pointer after the construc-
tion of the Clerk agent, as expected.

Our system consists of four Client agents and the 
initial  agenda contains  two instances  of  ClientArrival  
and two instances of ClientCall  (see Fig. 9).  This last 
diagram may differ in every simulation experiment, as 
the user may want to observe different client sequences.

When  large  numbers  of  transient  objects  are  in-
volved, it is convenient to model and implement agents 
which  play  as  event/agent  generators.  On  the  other 
hand, a diagram as the one depicted in Fig. 9 is typical 
for validation purposes: simple configurations are need-
ed to test the model using ad hoc initial  states which 
produce a predictable output.

Figure 9: Initial State, Transient Objects

4.8. The Project Diagram
The project  diagram is an index of the whole model, 
needed to give structure to all the specification.

It is an UML object diagram (see Fig. 10) contain-
ing the packages  for  entities and  events.  Inside those 
packages we distinguish between  elements that specify 
either the  structure or the  behaviour of an entity or an 
event. A third packages is the system initial state, which 
includes the diagrams described in section 4.7.

Figure 10: Project Diagram

4.9. Well-formed Models
In this section we propose a definition of “well-formed 
model”. This definition is exploited by the code gener-
ator to perform consistency checks on the model.

A model can be defined in set-theoretic terms as:

M=<A,E,B,D,O,P>, 

where:

• A is a set of agent types (class diagrams),
• E is a set of event types (class diagrams), 
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• B is  a  set  of  agent  behaviour  specifications 
(state machine diagrams),

• D is a set of event dispatching specifications 
(activity diagrams),

• O is a set of object diagrams,
• P is a set of project diagrams. 

Definition: Let a,b∈A, we say that a inherits from 
b, and write a→b, if a is a diagram of a subtype of b.  
We say that a is a child of b, and b is a parent of a.

The definition also applies to the elements of E.
Definition: Let A be a subset of A, and aM ∈A, we 

define aM as a maximum element in A if 
¬∃ a∈A : aM→ a,

Definition: am ∈A is a minimum in A if
¬∃ a∈A :a→ am .

Definition: Let A be a subset of A,  not empty. A is  
defined as a hierarchy-connected set (hc set) if A has a  
maximum aM and 
∀ a∈A -{aM} : ∃ b∈A: a→ b.

Definition: A ⊂ A, A an hc set. A is a linear set if  
∃!am ∈A minimum for A.

The definitions of hc set and linear set can be easil-
y extended to subsets of E.

Definition: Let b∈B and a∈ A . We say that b is  
associated to a, and write bµ a, if b is the behaviour of  
a. Let  d∈D, and e∈E, We say that d is associated to e,  
and write dµ e, if d specifies the dispatching of e.

Definition: Let d∈D and e∈E, dµ e. We define the  
handler set of d, and write h(d), as a subset of A such  
that ∀a∈h(d), a is the diagram of the entity type of an  
handler of the event e.

Definition:  b∈B, a∈A,  bµ a,  we define the  han-
dled set of b, written H(b), as a subset of E such that
∀ e∈H(b), a∈h(d) where dµ e.

The  definition  of  handler  set  and  handled  set 
should be extended to cover those cases where an entity 
a, included in h(d), does not define a state machine. In 
this case is correct to include the event e (such that dµ e) 
in the handled set of the behaviours of the children of a.

Definition: Let M be a model. M is well-formed if

• All A,E,B,D,O,P are not empty
• #O =2
• #P =1 
• ∀ b∈B : ∃! a∈ A :  bµ a
• ∀ d∈D :∃! e∈E : dµ e 
• ∀A⊂A  linear hc set, ∃ b∈B: ∃ a∈Α, bµ a
• ∀E⊂E linear hc set, ∃ d∈D : ∃ e∈E, dµ e
• ∀b∈B, ∀e∈H(b),if bµ a and dµ e, then a∈h(d)
• all the entity and event types used in the dia-

grams of O must be defined in A,E,B,D.

5. CODE GENERATION
The ADE simulation framework includes a prototypical 
code  generator,  GS_ADECodeGen. The  generator  ex-
pects the diagrams to be encoded in a given XML for-
mat. The resultant C++ project is ready to be compiled, 
without  further  editing  of  the  code,  and  retains  the 
modular structure of the UML model. The intervention 
in the generated code is avoided because is possible to 
include the few really needed lines of C++ code in the 
UML model, as we discuss in this section.

After an overview of the code generation process 
(Section 5.1) we present a completed program-level dia-
gram (Section 5.2), the XML encoding of the  PClient 
class and state machine diagrams (Section 5.3) and the 
corresponding C++ code (Section 5.4).

5.1. The Code Generation Process
The development of a simulator using the ADE method 
is an example of model-driven programming. As stated 
by Sarkar (2002), XML/XSLT-based source code gen-
eration is a convenient paradigm, much simpler to use 
than Compiler-Compilers tools.

The UML diagrams and their XML encoding are 
two equivalent ways to specify the model, one is the hu-
man readable graphical form, the other is needed to feed 
the code generator. 

The XML Schemas and Stylesheets are fixed in-
puts in the generation process. To parse and manipulate 
the XML documents we use the DOM interface provid-
ed by the Xerces library. Before the transformation, we 
need to check the model for semantic errors, and per-
form some manipulation (like merging structure and be-
haviour diagrams). The transformation process uses the 
Xalan library. Xerces and Xalan are open source pro-
jects developed by the Apache Foundation (1999).

Figure 11: Code Generation Process
  
5.2. Completing the Diagrams
In order to generate the code, the blueprint-level UML 
model has to be completed to program-level. Our UML 
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notation provide the conventions needed to integrate the 
missing code in the diagrams.

Fig. 12 shows a program-level version of the entity 
diagram in Fig. 2. The needed C++ code is included in 
comment  boxes  associated  to  the  methods  definition: 
Clerk::serve(Queue*) pops a client from the queue and 
schedule an  EndService event.  To  schedule  an  event, 
each class derived from ActiveEntity inherits the sched-
ule(Event*) method, which adds an event to the agenda. 
The  PClient and  DClient constructors  use  the  parent 
stereotype, which indicates the superclass method call.

Figure 12: Classes of System Agents, Program-level

5.3. XML Encoding
In the following we show two excerpts of the XML files 
which encode the UML model of the case study. In par-
ticular, we present the XML encoding of the class and 
state machine diagrams for the PClient entity type.

In order to highlight the equivalence between the 
UML format and its XML encoding, the bold typeface 
is used to refer the XML code directly derived from the 
UML diagrams. Plain typeface is used for the needed 
XML syntax “glue”. 

5.3.1. PClient Entity Diagram
In the following we present the XML encoding of the 
PClient class diagram (see Fig. 12).

<entity name="PClient"> 
<relationship type="generalization"> 

<class name="Client"/> 
</relationship> 
<encapsulation type="public"> 
<attribute name="pQ" type="GS_Queue*" 

static="true" default="NULL"/> 

<method name="queue" type="void"> 
<body text="pQ->pushLast(this);"/> 

</method> 
<method name="PClient" type=""> 

<parentmethod name="Client"> 
<parameter name="aT"/> 
<parameter name="sT"/> 
</parentmethod> 
<parameter name="aT" type="GS_Time"/> 
<parameter name="sT" type="GS_Time"/> 
<body text=""/> 

</method> 
</encapsulation> 
</entity>

Methods and attributes are collected by encapsula-
tion, as we are used to see in C++ header files. The in-
heritance relationship of  PClient from  Client is expli-
citly encoded as well it is the inheritance of Client from 
ActiveEntity,  which  implies  that  all  its  subclasses  are 
active entities.

5.3.2. PClient State Machine Diagram
In the following we present the XML encoding of the 
PClient state machine diagram (see Fig. 6).

<StateChart activeEntityId="PClient"> 
<state id="dialing" type="initial"> 

<transition nextState="inService" 
     event="ClientCall" 

        action="queue()"/> 
</state> 
<state id="inService" type="regular"> 

<transition nextState="served"
     event="EndService"/> 

</state> 
<state id="served" type="final"/>

</StateChart>

5.4. C++ Code
In this section we show an examples of generated C++ 
code.  In  particular,  we  present  the  PClient sources. 
They are organized  in one header  file  (.hpp) and one 
implementation file (.ccp). 

In  order  to reveal  some details  of the generation 
process, the code that is obtained by verbatim replica-
tion of information already explicit in the XML encod-
ing of  the  UML model  is  rendered  in  bold  typeface. 
Plain typeface is used for the code added by application 
of the code generation patterns.

5.4.1. PClient.hpp
In the following we present the generated header file of 
the PClient class.

#include "../../../../GS_DSLibs-3.5b/
GS_EvEng/lib/GS_EvEng.hpp" 

#include "Client.hpp" 
class ClientArrival;  
class ClientCall; 
class Clerk;
class DClient;
class EndService; 
#define PCLIENT_DIALING 1 
#define PCLIENT_INSERVICE 2 
#define PCLIENT_SERVED 3 
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class PClient : public Client {
private:

int state;
protected:

static GS_Queue* pQ; 
void queue(); 

public: 
 PClient(GS_Time aT,GS_Time sT); 

virtual void handle(GS_Event* event); 
static void setpQ(GS_Queue* arg); 

};

The .hpp file contains all the definitions given in 
the class diagram. The handle(Event*) method does not 
appear in the class diagram: it is added because in the 
model there is a state machine for PClient (see Fig. 10). 
Still from diagrams are derived: the setter for the static 
queue and the forward declarations of all the classes in 
the model (Fig. 2 and 3), a private attribute state and the 
defines for the identifiers of the entity states (Fig 6).

5.4.2. PClient.cpp
In the following we present the generated implementa-
tion file of the PClient class.

#include "PClient.hpp" 
#include "../../../../GS_DSLibs-3.5b/

GS_EvEng/lib/GS_EvEng.hpp" 
#include "ClientCall.hpp" 
#include "ClientArrival.hpp" 
#include "EndService.hpp" 
#include "Clerk.hpp”
#include "DClient.hpp" 
GS_Queue* PClient::pQ=NULL; 

void PClient::queue(){ 
pQ->pushLast(this); 

} 

PClient::PClient(GS_Time aT,
  GS_Time sT): Client(aT,sT) { 

state=PCLIENT_DIALING;
} 

void PClient::setpQ(GS_Queue* arg) { 
pQ=arg; 

} 

Note that in the constructor the generator added the 
initialization of the state attribute, with the value of the 
PCLIENT_DIALING initial state.

void PClient::handle(GS_Event* event) { 
switch (state) { 
case PCLIENT_DIALING: 

if(event->getId()==CLIENTCALL) { 
queue();
state=PCLIENT_INSERVICE; 

} 
break; 
case PCLIENT_INSERVICE: 

if(event->getId()==ENDSERVICE) {
state=PCLIENT_SERVED; 

}  
break; 
case PCLIENT_SERVED: 

delete this; 
break; 
default: 

     cerr << "Error: undefined state.\n";
    }
} 

The code of the handle method is derived follow-
ing a pattern from the state machine diagram:

• the  switch-case  construct  is  used  to  decide 
what is the current state of the entity;

• if-then-else  selects  the  transition  evaluating 
the specified guards;

• inside the body of the conditional branches is 
executed  the  specified  action  and  the  actual 
state transition.

6. EXPERIMENTAL USE AND FUTURE WORK
In  this  paper  we presented  the  GeneSim approach  to 
ADE  simulation  of  dynamic  systems.  To  ease  the 
modelling process we exploit UML at different levels of 
detail.  Moreover,  we  provide  an  efficient  and  safe 
transition from the UML model to the  simulator  (Paci 
2011).  The  UML  at  its  highest  level  of  detail  fully 
specifies the system and can be used as input to a C++ 
code generator. The resulting source code can be com-
piled  and  linked  to  our  runtime  library  to  obtain  the 
simulator  executable.  Several  components  of  this 
framework has been validated in real case studies. 

The UML notation and  the  code  generation  pat-
terns have been tested in a case study about the simula-
tion  of  a  demand responsive  public  transport  system. 
The case  study involved  the province  of  Brescia  and 
MAIOR srl, a leader firm in Italy for transport manage-
ment software (Bertuccelli 2007,  Gerardi 2007). 

The  runtime  library  has  also  been  successfully 
tested in a case study about the simulation of the public 
bus service in La Spezia. The experiment was mainly 
targeted  to  validate  the  performance  on  a  real  size 
example:  the   transportation  network  counted  3071 
vertices and 4300 links, the service schedule was made 
of 112 routes and 3029 daily courses. Simulation of a 
full  day  service  required  less  than  1 sec  on ordinary 
hardware. Moreover, the experiment showed that times 
are linear  with the size  of  the service (Gervasi  2010, 
Cignoni  and  Gervasi  2011).  The  case  study involved 
ATC Servizi Spa, the public company running the bus 
service in La Spezia, and, again, MAIOR Srl.

Future development of the project will improve our 
UML notation to explicit the scheduling of events. Fur-
thermore, we plan to introduce an UML notation to rep-
resent  object  construction,  maybe  inspired  to  normal 
object form as proposed by Bunse and Atkinson (1999).

Another  important  development  of  the  GeneSim 
environment for ADE modelling and simulation will be 
an UML editor capable of producing the XML encoding 
of  the  model.  This  tool  will  be  syntax-driven,  and 
should be developed together  with further  releases  of 
the generator (GS_ADECodeGen). Future release of the 
code generator will also perform consistency checks on 
the model, and produce error and warning messages that 
would guide the user in the model building process.
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