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A Virtual Experience on the Very First Italian Computer
GIOVANNI A. CIGNONI, FABIO GADDUCCI, and STEFANO PACI, Department of Computer Science,
University of Pisa, Italy

Despite their temporal proximity, the technologies of the early computers are far from us. Yet, they are part of the history of
science and technology, and they deserve to be studied and popularized. Being machines made to run software programs, they
should be exhibited running. Unfortunately, old machines still in working condition are extremely rare. Restoring or rebuilding
an old computer is a hard, expensive task: the original components are rare, and the technology is forgotten and sometimes
lost. The research needed to re-understand those computers has to adopt experimental archaeology methods: rebuilding old
hardware/software requires proceeding by hypotheses and experiments.

However, a rebuilt or restored computer is a unique exemplar and a precious specimen: it is not suitable to let people interact
with it. A more flexible solution is to use software simulations. First of all, simulation is a valuable tool to carry out the ex-
periments needed to study past technology. Second, the simulators are virtual replicas that let people fully understand the old
machines by interacting with them without jeopardizing those precious relics of the past.

This article presents the virtual rebuilding of the first computer made in Italy: the Macchina Ridotta (MR) of the University
of Pisa. The MR was dismantled after few months of intensive usage to cannibalize the materials for a second computer. As
a consequence, the MR disappeared from later chronicles and for many years was ignored by historians. When we attempted
to reconstruct the MR history, we found that the survived documentation was far from complete. Simulation proved to be the
key tool to support the experimental approach adopted for understanding the MR technology, rebuilding it, and assessing its
achievements. The MR simulator is now used at the Museum of Computing Machinery of Pisa as a mean to truly experience
a working session on the MR—a typical computer from the 1950s. The exhibit and the workshops, by exploiting the accurately
reproduced characteristics of the MR, address popularization of computer science from several perspectives: from technological
mechanisms to scientific foundations, passing through the representation of computers in popular culture.
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1. INTRODUCTION

Computers are ubiquitous components of today’s technology and participate in our everyday life. Al-
though they made their appearance not very long ago, their history is dense and largely unknown.
Such a history deserves to be studied and popularized. Primarily for its own sake, and for the advice
that the successes and failures of the past may carry to the modern pratictioneers. Often, it may still
be narrated by the same protagonists of those events (e.g., see the opening remarks in Tatnall [2012]).

Besides their interest for the researchers, old computers are fascinating machines for many people;
they can be used to raise interest in computer science and technology and even become a way to teach
how modern computers work, as the principles and basic operating mechanisms are still the same
(see Akera and Aspray [2004] for a comprehensive survey, Harms and Berque [2001] for a hands-on
experience on a computer from the 1970s, Impagliazzo and Samaka [2013] for the most recent entry
on the use of history as a teaching tool, and Rojas and Hashagen [2000] for one of the few volumes
devoted to comparative studies on the architectures of the first computers).

The seminal report entitled The Public Understanding of Science (PUS) [Royal Society 1985] opened
a rich debate about science popularization. Among other issues, the PUS stated that the traditional
role of schools has to be assisted by other institutions. Museums in particular can transfer knowledge
by using captivating means and providing experiences that may not be perceived as “teaching.” In this
perspective, museums must not be conceived for people who already have some interest in science and
technology but to attract the general public and to raise a new curiosity.

It is a commonsense statement that early computers have a natural appeal to a specific public:
informatics practitioners, technology lovers, those who become sentimental in front of the computer
they worked or played with as youngsters. There is also a growing audience of retrocomputing enthu-
siasts and collectors. For these people, a traditional exposition of old machines with a tagline full of
technical data suffices. However, this is not the public we need to attract.

Drawing the attention of visitors is a major concern for scientific museums. The topic has been
debated for a long time, and it was the focus of a recent IFIP congress on the history of computing
[MHCR 2013]. A typical “trick” relies on providing the visitor with a sense of awe: big technological
artefacts are immediately perceived as being out of the ordinary, and exploiting the “sense of wonder”
in exhibitions (e.g., see Greenblatt [1991]) has already been applied to science and technology museums
[Blyth 2013]. Computers of the past, particularly those made in the 1950s and 1960s, are often such
kind of machines, with an additional, distinctive old-fashioned look. A running old computer with
lights, changing screens, spinning tapes, and so on may truly act as an attraction point.

Unfortunately, early computers are extremely rare today, and those preserved are usually not in
working condition. In many cases, some historical machines simply no longer exist, and thus the only
viable option is to rebuild them [Sale 1998]. The effort to restore (and maintain) an old computer in
working condition is impressive. Apart from the materials, the main challenge in restoring (or re-
building) and operating an old computer is the amount of research needed to understand its technol-
ogy. As an example, the Zuse Z3 rebuilding project required 5 years of preparatory work [Rojas et al.
2005]. Nevertheless, due to historical and educational interests, several museums have succeeded in
the enterprise and now exhibit working old computers (see Section 2.2). But, of course, visitors are not
allowed to have their hands on such precious relics.

Software simulation is a worthy alternative to recreate virtual, albeit realistic and accurate, replicas
of old computers that can be safely used in installations, thus letting persons interact with them to get
a full view of past technology both from the hardware side (the working machine) and the software
side (the running programs). As an additional benefit, being software themselves, the virtual replicas
can also be easily distributed, allowing visitors to continue their experience at home. (For a successful
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experience with the seminal ENIAC, see Zoppke and Rojas [2006] and the references therein for further
case studies.) Most importantly for the historians, simulation is also a valuable tool for understanding
or even rediscovering the technology of an old computer.

This article presents the results of the HMR [2013] project, which was carried out at the Depart-
ment of Computer Science of the University of Pisa. HMR stands for Hacking the Macchina Ridotta,
with the 1957 Macchina Ridotta (Smaller Machine, MR) being the first Italian computer [Cignoni and
Gadducci 2012]. The primary goal of the project was to virtually rebuild the MR, as the original was
dismantled in early 1959 to reuse its materials in the construction of another computer. Due to the
scarce documentation retrieved, HMR had to adopt experimental archaeology methods to understand
the technology of the MR and to rebuild it—hence, the reference to the hacker culture and its curios-
ity about investigating computer details. Thus, we used modelling and simulation as the key tools to
formulate and validate the rebuilding hypotheses. The in-depth technological assessment of the MR
needed to develop the simulator led towards a more faithful reconstruction of the events surrounding
the successful building of the first Italian computer. As a further result of our project, the simulator is
now used to show the MR at the Museum of Computing Machinery in Pisa.

Our article presents these achievements, focusing on the two advantages of modelling and
simulation as a way to interact with the past. It allows researchers to validate rebuilding hypothe-
ses and the public to experience the look and feel of a computer from the 1950s. Section 2 introduces
the experimental archaeology methods as applied to computer science. Section 3 describes simulation
as a tool for historical research and presents our modelling and simulation techniques. Section 4 sum-
marizes the HMR results on the rediscovery of the first Italian computer. Section 5 shows the use of
the MR simulator to popularize and teach computer science.

2. EXPERIMENTAL ARCHAEOLOGY OF COMPUTER SCIENCE

According to the largely agreed on definition of computer as a Turing-complete machine with a stored-
program architecture, the year zero of the computer age has to be set in 1948 when the Small Scale Ex-
perimental Machine (better known as the Manchester Baby) successfully ran its first program
[Burton 2005]. If we want to include other renowned electronic ancestors like the ENIAC [Marcus
and Akera 1996] or the Colossus [Flowers 1983], or electromechanical devices like the Zuse machines
[Rojas 1997], we may backdate the beginning by a decade. Even counting far remote devices such as
the tabulating machines [Fierheller 2006], we still stick to the 20th century.

Given such a short timespan, and considering that the discipline developed in times of which the
risk of loss of documents and evidences is supposed to be lower (somehow downgrading the urgency for
their research), at first it may seem premature to talk about the “archaeology” of computer science.

2.1 How Old Are Old Computers

Computer science has been always characterized by its extremely rapid progress. Technologies have
a very short lifecycle: they arise, succeed for few years, then quickly become obsolete, and eventually
are replaced and forgotten. Modern hardware and software engineering experts are distant from the
technologies used decades ago. Old machines appear as arcane devices to today’s historians: they may
figure the general picture, but it is difficult for them to fully understand the details needed to restore
an old computer to working conditions or rebuild it from scratch.

Often, only a few parts of the original machine survive, and frequently they are in bad condition.
The original documentation, recovered by digging into the archives, may not be complete. When it
is available, it uses obsolete notations and has to be deciphered like a lost language. If all of these
considerations are taken into account, it seems appropriate to use the term archaeology.
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Because of the many gaps in the knowledge gathered from recovered documents and evidences, the
reconstruction of a computer from the past is like solving a big technological puzzle. The reconstruction
is a continuing challenge: it proceeds by hypotheses that must be experimentally proved.

In fact, experimental archaeology is a well-defined research methodology. It concerns the study of
technologies of the past, carried out by attempts to recreate and use ancient artefacts. The Damascus
Steel is one of the best-known case studies [Reibold et al. 2006]. Few swords forged with this technology
remain, but the metallurgical technique is lost and the debate is open: is Damascus steel different from
Indian wootz steel or Japanese folded steel? Another interesting case is the trebuchet, a huge siege
machine whose tricky physics has been lost in time [Hansen 1992].

With respect to other technologies of the past, old computers present the same characteristics that
make the adoption of experimental archaeology methods worthwhile. There is only one, positive dif-
ference: given the relative proximity, it is sometimes possible to involve the original developers in
the rebuilding challenge. It is not possible to ask them to remember the many details of such com-
plex machines, but they can help to set the boundaries of the knowledge of the time and to as-
sess the general soundness of the rebuilding hypotheses: would they have made the same
choices?

2.2 Restoring and Rebuilding Projects

Many research initiatives exist that have already applied the methods of experimental archaeology
to recover and bring to life a few of the preeminent relics of computing history. Without any claim of
completeness, we briefly give an account of some of the most intriguing.

Many UK projects are sponsored by the Computer Conservation Society [CCS 2013]. Their results
are shown, for example, at the National Museum of Computing [TNMOC 2013], the London Science
Museum [SM 2013], and the Manchester Museum of Science and Industry [MOSI 2013].

Colossus was the machine used at Bletchley Park during WWII to decrypt the Axis transmissions
encoded with the Lorenz SZ42 [Copeland 2004]. Besides such a historical value, Colossus was one
of the first electronic machines. However, its technology was almost lost: fearing information leaks,
the Colossi and their documentation were destroyed during the Cold War. The reconstruction started
in 1993 based on the few surviving documents and the memories of scientists and engineers [Sale
1998]; the replica has been functioning since 2007. In 2011, the rebuilds of the Tunny Machine, an
electromechanical reverse-engineered Lorenz, and the Heath Robinson, the electromechanical ancestor
of the Colossus, were completed [TNMOC 2013]. The Bletchley Park Trust Museum [Bletchley Park
2013] exhibits a working replica of the 1940 Bombe, the electromechanical device used to decrypt
the Axis transmissions encoded with the Enigma. The Bombe is not a true computer, but a relevant
precursor whose rebuilding project started in 1996 and ended in 2007.

The National Museum of Computing [TNMOC 2013] exhibits a number of working old computers,
the result of impressive restoration (and continuous maintenance) projects. Among them, it is worth
citing the 1951 WITCH, based on the fascinating Dekatron Tubes and restored in 2012, and a 1961
Elliot 803B. The museum also is carrying on a project to rebuild the 1949 Cambridge EDSAC.

In 1998, the Computer Conservation Society completed the reconstruction of The Baby to celebrate
50 years of stored-program computing [Burton 2005]. Since then, the working replica has been part of
the exhibits of the Manchester Museum and is regularly demonstrated to the public—being 16 years
old, the replica is becoming an old computer as well.

In 1985, the London Science Museum started a project to build the Babbage’s Different Engine No.2;
the machine is now part of the permanent exhibition [Swade 2005]. It is worth noting that this machine
is not a replica: Babbage was never able to build it; however, the 1985 project proved that it would have
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been feasible with the engineering capabilities of the Victorian age. A project attempting to build the
more complex Babbage Analytical Machine is under way [Plan28 2013].

In the United States, the restoration of an original 1960 Digital PDP1, probably the most innovative
and advanced commercial computer of its time (featuring a graphical display with a point and click
device), started in 2004. The machine is now on display at the Computer History Museum in Mountain
View, California [CHM 2013], and it is the protagonist of special events, like the periodical runs of
Spacewar!, the very first interactive computer game developed at MIT on a PDP1.

As well from the United States, it is worth mentioning the recovery of the complete blueprints of the
Block I AGC, the guidance computer installed on the control module and lunar lander of the Apollo
missions. This project’s original documentation is published online, with step-by-step instructions for
building one’s own replica of the Block I [NASA Office of Logic Design 2013].

The German 1941 Zuse Z3 was destroyed during a bombing raid. Its relevance is due to a recent
proof that, under particular assumptions, it can be considered the first Turing-complete machine [Rojas
1998]. A first replica was built by Zuse himself in 1961, which now resides at the Deutsches Museum
[Deutsches Museum 2013]. A second one was made in 2001 [Rojas et al. 2005]. Lastly, a third full-
featured replica was completed in 2011; there is a plan for exhibition at the Konrad Zuse Museum in
Hünfeld, Germany [Zuse 2013; KZM 2013].

Among French projects aimed at putting old computers back to working conditions, we mention the
Digital PDP 9 restoration carried out by the Aconit Association [Aconit 2013].

Finally, as an example of a project in the related field of analog calculators, procedural computer
graphics has been used to rebuild astrolabes, both as virtual replicas and as a way to engrave actual
ones by driving numerically controlled machinery [Zotti 2008].

Our rebuilding project started in 2006 at the Department of Computer Science of the University
of Pisa. The aim of HMR, since the beginning, has been to virtually rebuild the MR. Apart from the
challenge of bringing back to life the first Italian computer, the project was motivated by the belief that
without an actual (simulated) machine to play with, it is difficult to correctly assess its technological
characteristics and evaluate the historical context surrounding its realization.

3. MODELLING AND SIMULATION FOR VIRTUAL REBUILDING OF OLD COMPUTERS

The idea of virtually rebuilding the MR stemmed from a background in modelling and simulation.
Methods and tools used by the HMR project are the results of a parallel research activity. From this
perspective, we consider the virtual MR as a case study in the modelling and simulation of hardware
systems. This section shows how these techniques can be useful for rebuilding virtual replicas of old
computers, using as a running example our experience with the two versions of the MR: the first design
dated 1956 (MR56) and the second one dated 1957 (MR57; see Section 4 for historical details). As an
introductory step, our presentation begins with a discussion on terminology.

3.1 Simulation versus Emulation

Usually, a virtual rebuild of an old computer is termed an emulator, even if we prefer to use the
more general term simulator. The difference between the two terms is subtle. According to the IEEE
Standard Glossary of Software Engineering Terminology [IEEE610 1990]

—A simulator is a device, computer program, or system that behaves or operates like a given system
when provided a set of controlled inputs.

—An emulator is a device, computer program, or system that accepts the same inputs and produces
the same outputs as a given system.
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For a given input/output interface, an emulator is thus indistinguishable from the real thing. In
some cases, virtual rebuilds of old computers are actually emulators. The renowned Multiple Arcade
Machine Emulator [MAME 2013] (in all its variants and portings) is an emulator of the hardware of
the cabinets used for penny arcade video games, working with the code of the original game ROMs.

A simulator, on the other hand, benefits from more degrees of freedom, as it implements a model of
the system that, depending on convenience, can ignore or approximate a number of details. As far as
the model is clearly declared, the simplification with respect to the real thing is not a negligence. In the
practice of modelling and simulation, it is fundamental to focus the effort on the characteristics of the
system of which we are interested to study. When applied to the virtual rebuilding of old computers,
this degree of freedom is an additional opportunity. For instance, considering our virtual replica of the
MR57, we approached different rebuilding issues according to different criteria:

—Machine language: The virtual MR57 is a true emulator because it interprets every program written
in the MR57 machine language and produces exactly the same outputs of the original MR57.

—Timing: The virtual MR57 is a real-time emulator with a measured error; the simulator runs on
ordinary PCs in a multitasking environment, so it is not possible to guarantee that each single
machine instruction is executed with perfect timing. However, the simulator displays the current
cumulated error between real time and the simulator time; tests show that such an error remains in
the order of 1/100 s even in several-hour-long runs.

—I/O devices: The binary signals at the connections are emulated with the preceding time limitations,
but the peripherals of the MR57 (tape readers, tape punchers, and teletypewriters) are simulated in
a very simple way that does not consider many of the mechanical characteristics of those devices.

—Control panel: The MR57 console has been simulated as a graphical interface. Layout and look are
accurate, even if the proportions of the single items were adapted to ease user interaction through
mouse/touch devices. Great care was devoted to simulate the lights to represent with a reasonable
degree of realism their actual and characteristic behaviour.

Modelling a machine at different levels of detail is a valuable convenience when we want to simulate
an old computer both for research and popularization purposes. In the MR57 case, for instance, the I/O
devices are at the moment grossly simulated because we are still researching about their behaviour,
especially in the interesting (yet undocumented) cases of errors and edge conditions.

Another example is related to obtaining an accurate visual look and feel of the control panel: the
lights needed a more fine-grained simulation than the switches. For the gas-filled, cold-cathode Z50T
triodes used for the panel lights, we had to model the ionization states using a discrete approximation
with timing accurate to the microsecond. The switches are instead less relevant in the virtual repre-
sentation of the panel: the interaction is forced through a mouse/touch interface that has no physical
feedback, so we did not model details like the mechanical characteristics of the internal spring of the
switches.

3.2 Why Simulation

To popularize the history of computing, at least three questions need to be answered: how hardware
worked, which software was run and for which purposes, and how people interacted with those ma-
chines. An exhibition of switched-off computers is a poor description of such a history—and a gloomy
sight. A computer should always be shown running; otherwise, it represents at most half of the story,
the one limited to the relics value. Furthermore, switched-off machines often lead to overrating the
exterior design, which in some cases is appreciable, but an add-on to the concentration of science and
technology inside.
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Old computers can also be used to teach computer science. They are odd enough to arise curiosity,
although the principles and basic mechanisms are still the same. In addition, they are simple and
transparent: unlike modern computers, they expose all of their inner workings without hiding them
behind user-friendly interfaces. Therefore, they can be understood down to their details.

To answer the questions mentioned earlier, restoring original machines to working conditions and
showing them running is an appealing solution. However, switching on the original machines exposes
these relics to damage. Moreover, substituting faulty parts to achieve and maintain working condi-
tions may compromise authenticity. Building hardware replicas is a solution to avoid jeopardizing the
originals. It is also a challenging enterprise when the original has been lost (or was never built).

Working originals and hardware replicas are worthwhile to museums: they make it possible to set up
appealing exhibitions and to organize periodic demonstrations or sporadic switch-on events of popular
acclaim. They are great assets to capture both the public and the attention of the media.

Yet hardware does not last forever, and many materials, such as particular vacuum tube types or ger-
manium transistors, will be more and more difficult to retrieve as time goes by. Replicas and restored
machines have a limited lifespan or, due to the substitution of original components with equivalent
modern counterparts, are destined to be increasingly different from the originals.

The best way to experience an old machine is to personally interact with it and its unfriendly user
interfaces. For example, for researchers investigating the delay of an old software project, lots of insight
may come by trying to code, verify, and debug a program in the same conditions as the pioneers. For
the general public, the hand-on experience, even on simplified tasks, is appealing and rewarding.

However, working originals or replicas are huge pieces of hardware and are tied to their physical lo-
cations. Researchers, and generally anyone who wants to see them, has to visit those museums where
they are on display. With respect to the purpose of popularization of computer science, this fact re-
duces the number of potential users. Moreover, originals and replicas are valuable items: it would be
unthinkable to let the visitors of a museum or some students have their hands on such precious relics.
Such objects are used for demonstrations, but people can simply attend and not interact.

On the other hand, simulators are software, and they can be exhibited and demonstrated in a mu-
seum, as well as infinitely replicated and (freely) distributed. In addition, smaller museums may
demonstrate them. Simulators may be easily distributed using the Internet: the number of enthu-
siasts who download a simulator to play with at home is likely low, but the service is worth the effort if
we consider the researchers and the schools. If a class is introduced to the simulator during a demon-
stration carried out at a museum, the experience can be continued using the simulator in a lab.

As in other fields, simulation can enhance the user experience with educational and entertainment
purposes. (See, for instance, USARSim [Carpin et al. 2007], a robot simulator for teaching engineering,
and SuperCharged! [Squire et al. 2004], an edutainment tool for electromagnetism physics.)

3.3 Modelling before Simulating

There are simulators for many computers of the past, from the earliest machines to the more recent
ones. Few hardware restoring/rebuilding projects provided simulators of the target machines. As an
example, during the Manchester Baby rebuilding, several simulators were developed and made avail-
able through the Internet [Napper 2013]. Those simulators were later used for programming contests
issued for the Baby anniversaries in 1998 and 2008. Two of them, one in Java and one in SystemVer-
ilog [IEEE1800 2009], are now freely available and used as case studies at the ECAD and Architecture
practical classes at the University of Cambridge [2013]. As a side effect, simulators are able to mitigate
the traditional rivalry among universities: the simulator of the Baby is used at Cambridge, home of
the EDSAC, which in turn has its simulator at Warwick [EDSAC 2013].
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With respect to a hardware rebuild, the development of a software simulator may seem like a simpler
task. There are surely some relevant advantages—no need for either searching (and purchasing) old
components or providing the adequate physical room for the assembly activities. However, the relevant
part of the challenge is the same: digging in the archives, retrieving and comparing all information
sources, and understanding the old technologies. Furthermore, in the case of a simulator, the required
knowledge may be even more demanding. Once a physical component is retrieved—from a thermionic
tube to a whole device like a teletypewriter—putting it in its place is relatively simple: plug it and it
will do its work. On the other hand, to simulate the same component requires more activities: the in-
depth understanding of the inner working of the component, the development of the component model
at the chosen level of detail, the implementation of the model in a simulator, and the integration of the
simulator of the component with the simulator of the whole system.

An additional benefit of the simulation approach is the resulting model. The relevance of the model
is twofold. First of all, it is a due step in the development of the simulator: modelling is the first phase
of a proper simulation project, and the model is both the specification at the required level of detail
of the system to be simulated and the specification of the simulator as a software artefact. Moreover,
since simulation is a discipline targeted to the study of systems that is not possible nor convenient to
study in real life, the model is an effective replacement to describe, to document, and to understand
the system itself.

In our context, the model is a good way to perpetuate the specifications of the computers of the
past in modern terms. Even if the original documentation is available, it uses outdated terminol-
ogy and language and needs an interpretation effort to figure out what those machines were like.
A model of the old computer in a modern formal language, like the SystemVerilog for the Manch-
ester Baby, acts as a sort of Rosetta Stone and can help further research, as the language is a recog-
nized standard [IEEE1800 2009]. For instance, descriptions in a common notation are good starting
points to compare architectures, solutions, and performances of different machines from the same
period.

In the HMR project, as a specification language for the MR we used UML [2013] and SysML [2013].
The choice originated from the results of another research project about modelling and simulation
[Cignoni and Paci 2012]. UML is for specification of software systems; SysML is an UML specializa-
tion targeted to general systems. We exploit the close relationship between the two languages to specify
a formal model of the system to be simulated and then to interpret such a model as a software specifi-
cation able to drive the generation of the simulator source code. Results of the research were applied
to a few real case studies and are part of the teaching activities carried out at the simulation course
held for the applied computer science degree of the University of Pisa.

With respect to SystemVerilog, one of the advantages of UML/SysML is that the model can be read
at different levels of detail. A complete and fully specified model is needed to automatically generate
the simulator source code, and of course it is a complex model. However, during the development of the
model, the ability to proceed by refinements is valuable. Moreover, different views are useful when the
model is adopted to describe the inner working of an old computer, addressing purposes ranging from
popularization to in-depth technical assessments. In the following, we show two of the UML/SysML
diagrams composing the model of the MR57 (and its simulator).

3.4 Excerpts from the MR57 UML/SysML Model

Figure 1 shows the state machine diagram of the MR57. Details about events and conditions that
control the transitions are hidden, yet the diagram tells a number of facts about the MR57. Arcs
between states are labelled by different types of events that trigger the transitions:
ACM Journal on Computing and Cultural Heritage, Vol. 7, No. 4, Article 21, Publication date: February 2015.
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Fig. 1. A (simplified) state diagram from the model of the MR57.

—Machine clock events, occurring at the clock pulse every 4 or 8 μs when the clock pulse generator is
enabled, labelled with

—Programmed stop events, occurring as a result of the execution of the stop instruction or when a
breakpoint match happens, labelled with

—I/O device-ready events, occurring when an I/O device terminates to perform a task such as printing
or reading a character, labelled with

—Manual control panel events, occurring when the user operates the MR57 console, typically pressing
the start button or setting the machine mode switches, labelled with .

The greyed arcs represent transitions that depend on the execution of machine instructions for I/O
operations. The states included in the grey background may be collapsed in one general running state
that hides the alternation of fetch/execute phases, thus providing a simpler view of the MR57.

The comparison of the two MR versions—the MR56 and the MR57—give us another example of
the use of UML/SysML models for assessing old computers. At the same level of detail, the difference
between the MR56 and MR57 state diagrams relies on the three states on the bottom (namely wait.RE,
fetch.D and execute.D), which are not present in the MR56. These states concern the direct access mode
that makes the input devices (especially tape readers) able to write directly in the MR57 memory, a
MR57 improvement that makes the program loading much more practical and, in particular, elegantly
solves the issue of booting the system software at machine startup.

Figure 2 shows the block diagram that describes the hardware components of the MR57. It is di-
rectly derived from one of the retrieved MR57 blueprints [MR/S/2 1957]: the names of the object in-
stances correspond to the ones used in the original documents. The diagram includes the I/O streams
(which are modelled as queues in our UML/SysML notation); the registers (nominally queues with a
single position); and subsystems such as the binary adder, the memory, the clock generator, and the
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Fig. 2. A (simplified) Block Diagram from the model of the MR57.

microprogrammed control. Some of the logical switches are controlled by the internal control bits, and
others by mechanical switches on the MR57 control panel (CAC1/2/3, CNR, CEI, CAIM, and PA).
Some of the I/O streams are connected to I/O devices such as punched tape readers, teletypewriters,
and tape punchers (ae, re, and ru), and others are connected to keyboards and indicators (tm, ti, in,
and im) on the control panel. For more details about the MR57, see Sections 4 and 5.

The diagrams in Figures 1 and 2 are presented as examples of our modelling approach. They are
only a little part of the diagrams that make the complete MR57 model, and for the purpose of this
article, they are shown in a simplified view that omits many details and, in some cases (like the “via
ad” and “control bits” shortcuts in Figure 2), even disrespects the UML/SysML syntax.

3.5 The MR Virtual Replicas

Even if hardware complexity cannot be avoided, the advantage of UML/SysML with respect to other
languages, such as VerilogSystem, is that it provides a graphical notation that makes it possible to
adapt the complexity (hiding part of it) to the audience to which the description is targeted.

The complete models of the two MRs include other types of UML/SysML diagrams such as class and
activity. At their maximum degree of detail, the diagrams are quite elaborate, for instance, regarding
the conditions and the actions specified on the transition arcs of the state diagram or the many con-
nections among objects in the block diagram. According to our method of modelling and simulation,
at this level of detail the UML/SysML specification can be used to generate the source code of the
simulator.

However, in the case of the MR virtual replicas, this ability was not fully exploited. The code gen-
erator produces source code for a traditional batch simulator that outputs data to be later analysed.
A simulator of this kind was useful in the research phase, when simulation was needed for studying,
assessing, and validating the rebuilding hypotheses. However, it is not adequate for teaching and pop-
ularization, when the main goal is to have people interacting with the replica in a more immersive way.
To develop real-time virtual replicas equipped with interactive interfaces, the simulator code had to
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be manually reworked. The main interventions were the integration with the graphical user interface
and the addition of timing management to achieve real-time accurateness, and to couple the simulator
with the refresh cycle of the graphical interface. Other issues concerned code optimization, which was
required to have a simulator run smoothly on ordinary hardware. In particular, the general-purpose
event queue used by the generated code was replaced by a custom solution that takes advantage of the
particular kind of events that characterized the MR models.

The MR56 simulator was the first to be developed. The documentation of the first MR design was
fully retrieved, including an early listing of the system software. The simulator was primarily ad-
dressed to the emulation of the machine language, and it was used to “restore” its software (see Sec-
tion 4). Written in Java to achieve platform independence, it provides a graphical user interface and a
simplified simulation of the control panel, the tape reader, and the teletypewriter.

The MR57 simulator was a more difficult challenge. Despite that the MR57 was the version of the
computer actually built and used for about half a year for computation services, the surviving doc-
umentation is far from complete. Simulation played a major role in the validation of the rebuilding
hypotheses, and the simulator was able to also address some low-level issues, such as evaluating
the performance benchmarks claimed by the MR57 designers or understanding the special operation
modes that let input devices write directly in the memory. The simulator is written in C++ to achieve
maximum performance. It is designed to be portable; for instance, for the graphical interface, it uses
the cross-platform WxWidgets library [WxWidgets 2013], but so far only Linux is supported (Debian
[2013] and Ubuntu [2013]) distributions. It provides a graphical user interface for the control panel
with an accurate representation of the look and feel of the lights.

4. CONTRIBUTIONS OF THE VIRTUAL REPLICAS TO HISTORICAL RESEARCH

The ELEA 9003 (or Elaboratore Elettronico Aritmetico, whose meaning is Arithmetical Electronic Com-
puter) developed by Olivetti in 1959/60 and the CEP (Calcolatrice Elettronica Pisana—i.e., Pisa Elec-
tronic Computer) built by the University of Pisa in 1961, have for a long time been considered the first
Italian digital computers. The latter was the final outcome of a long project carried out from 1955 to
1961 by Tuscan University, with the substantial participation of Olivetti.

The birth of the CEP is part of the founding myth of Italian computer science, and several authors
have contributed to report the events in this way (see De Marco et al. [1999] and Parolini [2008], among
others). Notably, the CEP project delivered a first fully functional computer already in 1957: the MR
that we introduced previously. However, the relevance of the MR has been overlooked by previous re-
searchers, and its accomplishments have been often underestimated—and sometimes plainly ignored.
Actually, the MR was considered just the core part of the final CEP: its name, which in Italian may
be interpreted as “partial machine,” contributed to deceive the historians. The MR was rediscovered
recently after a careful investigation of the technical documentation supported by simulation to assess
the machine characteristics and help to understand all of its details.

A few persons who worked on the MR participated in our rebuilding project: Elio Fabri (mainly),
Luciano Azzarelli, and Giuseppe Cecchini. They helped in the understanding of recovered documenta-
tion and in the reconstruction of missing parts of the MR blueprints. Given the complexity of the sub-
ject, they could not recall all the technical details needed for a proper reconstruction. In fact, what we
did was a tentative-driven rebuilding that involved the protagonists as experts of old
technology.

The resulting new reading of the early years of Italian computer science is summarized in the fol-
lowing sections. (See Cignoni and Gadducci [2012] for a detailed narrative that includes the proper
acknowledgement of the historical and technological relevance of both versions of the MR.)
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4.1 The CEP Project

In the early 1950s, the University of Pisa received (from the counties of Pisa, Lucca, and Livorno) large
funding to build a synchrotron in Italy and to launch Tuscany as a prominent area for nuclear research.
After the failing of the initiative, the Pisa Institute of Physics (currently the department of physics)
suggested using the funding for building an electronic digital computer. The Nobel Prize Enrico Fermi
was involved to second the proposal and win the resistance of the politicians and the doubts of parties
inside the university (mainly the faculty of engineering).

In March 1955, the CSCE (Centro Studi sulle Calcolatrici Elettroniche—i.e., Centre for Studies on
Electronic Computers) was formally established: Marcello Conversi, by then the director of the Insti-
tute of Physics, was appointed to be responsible for the centre. The CSCE was charged with the task
of designing and building an electronic computer within 4 years: the target machine was named CEP.

Olivetti was involved in the CEP project since its inception. After previous attempts with other
institutions, it likely considered the availability of funds as an opportunity not to miss: its willingness
to be a partner of the CEP project allowed the firm to offer specialized personnel, skills, materials,
and, in the final stages of negotiations, even a relevant direct financial investment. Formalized in May
1956, the collaboration began earlier with the participation of the Olivetti engineer Mario Tchou to the
drafting of the 4-year plan for the project.

The CEP computer was completed in the first half of 1961, about a year and a half later with respect
to the original plan. It operated for about 7 years and was subject to many enhancements. Despite
being a remarkable machine (with features such as the microprogrammability and the mechanism of
changing the instructions for passing parameters to subroutines), the computer world was radically
changed over the years when the CEP was completed. The technology of the 1961 machine fully reflects
the delay of the project and the consequent financial problems: although still an interesting device, it
was not a state-of-the-art product. For instance, the vacuum tubes upon which the CEP was almost
completely based were already being replaced by transistors. Additionally, things had changed in Italy.
In 1961, more than 20 computers were already installed, a number of which were made by Olivetti.
Indeed, the firm was fully reaping the fruits of its investments: the cooperation with the University
of Pisa planted the seeds of the ELEA 9003, the first commercial Italian computer announced in late
1959, and the 6001, a modular computer able to fulfil a wider range of tasks, presented a year later. It
is worth noting that both Olivetti products were fully transistorized.

Although the CEP computer arrived late, the experience was still rewarding for the university. The
CEP project allowed the collection of a wealth of expertise and human resources, and these would grow
year after year, resulting in the 1969/70 start of the degree in computer science, which by then was the
only one in Italy and among the first in Europe.

4.2 The Primacy of the MR

It is noteworthy that CSCE delivered a fully functional computer—the MR—already in 1957. The
first detailed design was delivered by the end of July 1956, the result of the work of a team of four
researchers who started the CEP project: Alfonso Caracciolo di Forino, Giuseppe Cecchini, Elio Fabri,
and Sergio Sibani. After a period of study and rethinking to improve the initial design, the MR was
finally completed a year later: the revised design was apparently ready by April 26, 1957, yet the
machine itself was announced as successfully working on July 24 of the same year.

In the following months, the MR was used to validate the solutions and to finalize the design of
the “ultimate” CEP (definitiva, as it was called)—the machine that was planned as the final out-
come of the project. More importantly, the MR was also used to provide computation services to
other research fields outside the CEP project. In the few months of its life, the MR accounted for a
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total of 150 machine hours “sold” for usage in external research projects. One of these projects ex-
ploited symbolic computation. At the time, the standard approach was instead numerical, whereas in
this case, the MR produced the result as an exact expression. Its use for research and development
of new programming techniques is further evidence of the versatility of the first computer built in
Pisa.

As well, the MR was the machine used when the first educational activities of computer science
in Pisa were held. In 1956, Elio Fabri offered an introductory course entitled “Programming of an
Electronic Calculator”: his experience as one of the MR designers was immediately used for knowledge
transfer. Moreover, in early 1958, the National Institute for Nuclear Physics detached at the CSCE
four researchers from its headquarters of Milan, Padua, Pisa, and Rome to learn how to use the MR,
which at that time definitely was the most advanced machine in Italy.

Quite interesting is the comparison of the MR with other machines of its time. The 1957 MR proved
to be an up-to-date device. Indeed, from a technological point of view, the MR adopted state-of-the-art
solutions that were not easy to find in similar computers at the time, such as the following:

—Parallel bit processing: Most machines were “serial”—the bits of a memory word were processed one
at time. The MR was instead “parallel”: it was able to elaborate all bits of a word at once.

—Ferrite core memory: In the 1950s, computers implemented the main memory using a variety of
different technologies: magnetic drums, acoustic delay lines, and Williams tubes were the preferred
solutions. CSCE researchers adopted the ferrite cores, choosing an emerging technology that was
destined to dominate for a couple of decades.

—Microprogrammed control: The implementation of machine instructions by means of programmable
microinstructions stored in a read-only memory yet easily writeable by external intervention is rec-
ognized as a result of the British EDSAC 2 Project described in the seminal paper of [Wilkes and
Stringer 1953; Wilkes 1986]. MR designers quickly adopted the solution, although it was simplified
by the small set of instructions and implemented by using a less sophisticated technology (diodes
instead of ferrite cores), making the MR one of the first fully microprogrammable machines.

To get an idea of the peculiarities of the MR, it suffices to say that none of those three design choices
occurred on the two other computers present in Italy when the MR began to be designed the American
CRC102, bought by the Polytechnic of Milan in the late 1954, and the British Ferranti MK1, which
was installed in early 1955 at INAC in Rome. In addition, on the performance side, the MR was a
fast machine. Thanks to a careful fine-tuning, the execution time of the instructions was reduced with
respect to the project estimates, making it superior to the other machines on the market, particularly
the IBM 704 installed in the French headquarters of IBM. Even if the IBM machine had more memory,
had more flexible I/O devices, and was equipped with a Fortran compiler, surpassing it on the most
straightforward benchmark was a remarkable achievement.

4.3 On the Two Versions of the MR

The proper assessment of the relevance of MR, as well as the identification of two different versions of
the machine, were the most interesting achievements of our technological investigation. Indeed, since
it was possible to retrieve almost all documentation of the MR design dated 1956, this version was
the first target of a virtual rebuild [Cignoni et al. 2009]. Unfortunately, this first design represented a
different, simpler, and less interesting machine.

We suspected that these were wrong descriptions of the MR eventually built in 1957 by matching the
blueprints of the 1956 design with the few documents (some photos and the user manual) that were
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identified as belonging to the MR57. The technologically driven investigation and further research in
the archives resulted in the proof of two versions of the MR designs. The smoking gun was a short
report, written by Caracciolo and Fabri, that summarized some of the differences. From a historical
point of view, the differences between the two versions are also an acknowledgement of the remarkable
effort carried out by the CSCE researchers in the refinement of the MR design.

However, the retrieved information was not sufficient to fully describe the MR versions. We got a
complete specification of the MR56 hardware, but gaps still remain in the documentation of its soft-
ware. For the MR57, the situation is even worse: the reports provide many clues, but lots of blueprints
are missing. The only viable solution was to use simulators as workbenches to test and validate the
rebuilding hypotheses.

The simulator of the MR56 was used to restore the system software. The memory of the MR56
(1,024 words 18 bits long) had the higher addresses reserved for system subroutines which make fully
operable the machine providing multiplication, division, decimal conversion for output purposes, and
an amazing program loader from the tape reader. We retrieved only an early draft of such code that,
loaded on the simulator, was discovered flawed by many bugs. We eventually fixed it to restore the
virtual MR56 to full working condition. It is still unclear if the MR56 remained only an early design or
it actually existed for a while as a first stage in the building of the MR. In any case, the virtual replica
proves that the design was feasible and helps to appreciate the differences between the initial design
and the final full-fledged machine.

The simulator of the MR57 was much more important to validate the rebuilding hypotheses formu-
lated following the clues scattered in the few retrieved blueprints and reports. The evolution from the
initial design was relevant, because with respect to the MR56, the MR57 had the following:

—More input devices; for example, a special input register was added that makes it possible to write
directly in the memory, and it was possible to connect a second tape reader or a teletypewriter to
this register, thus adding a keyboard to the MR user interface.

—More output devices, such as a second teletypewriter equipped with a tape puncher.
—A mechanism to set hot breakpoints in the machine code and to activate them at runtime using

switches on the control panel.
—An improved control panel to give more feedback; in particular, a display was added to show the

value of the program counter.

Due to input devices now able to write directly in the memory, the program loader subroutine was no
longer needed and the MR57 system subroutines required less memory space. The machine language
changed a bit, thus making the MR56 software not compatible with the MR57.

These features are now implemented in the current simulator of the MR57. Further enhancements
on the side of accurate simulation of I/O devices are still a work in progress, due to the many gaps in the
surviving documentation for the MR57: this is precisely where the use of simulators for experimental
archaeology comes into full swing.

5. THE USE OF THE VIRTUAL REPLICAS AS TEACHING TOOLS AT THE MUSEUM

The virtual reenactment of the past environment is generally focused on the development of immersive
devices largely based on 3D graphics, room filling displays, and so on [Laycock et al. 2008; CyArk 2013].
The aim of these installations is to present users with a plausible and appealing experience so that the
resulting enjoyment plays in favour of teaching/popularization. This approach has been used also to
reproduce virtual environments that visually recreate the large installations of old computers [Berry
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Fig. 3. The only surviving photo of the MR Manual Control Panel. (Archives of the University of Pisa.)

et al. 2011]. However, we focus on accurately recreate the computing behaviour of the old machines,
which for our objectives is of pivotal importance.

Furthermore, it is inherently difficult to provide immersive environments, as far as their association
with enjoyability is concerned. From this point of view, a machine from the past offers fewer opportuni-
ties than the yard of a medieval castle under siege. Lastly, the public is often biased by a deeply rooted
tradition of computer representation that, while effective, is not correct.

HMR also rebuilt hardware replicas of some parts of the MR. For instance, the replica of the six-
bit binary adder (one third of the MR real adder) was, according to the retrieved documentation, the
very first component to be built and successfully tested in early 1956. The replica was made from the
original blueprints using components and tools of the period—a few of them recovered from leftover
spare parts. Additionally, a modern version of the six-bit adder is available: it is made by small, handy
parts that students can easily play with. The logic and the modular architecture are the same as the
original adder, but today the electronic implementation uses components to reduce the size and to
work with low and safe voltage. These hardware replicas are used in teaching workshops about binary
arithmetic, Boolean logic, and basic architecture of digital circuits.

As we already mentioned, we rebuilt the virtual replicas of the two versions of the MR. In the
following, we focus on the MR57 simulator and on how it is used in the teaching workshops that the
Museum of Computing Machinery offers to middle and high schools. The MR57 simulator reenacts the
final MR, which was more relevant for historical and technological issues. Moreover, it emulates the
MR at a higher level of detail, making it possible to popularize different issues in computer science.
As well, as discussed in the Introduction, such a simulation is effective in higher education, since old
machines can be used to better show and discuss principles and mechanisms of computer science.

5.1 The Manual Control Panel of the MR57

As expected, the user interface of the MR57 simulator reproduces that of the MR57. Figure 3 shows
the only surviving photo of the MR57 with the Quadro di Controllo Manuale (QCM, or Manual Control
Panel)—that is, the user interface of the machine. Figure 4 presents the virtual QCM as reproduced
by the simulator. Among the QCM components are the following (with their original names):
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Fig. 4. The Manual Control Panel as reproduced by the simulator of the MR.

—Indicatore del Numeratore (IN, counter display, 10 lights, top right): displays the current binary
value of the program counter;

—Indicatore della Memoria (IM, memory display, 18 lights, under IN): displays the binary value of the
last written word on the MR memory; however, since the ferrite core memories have to be rewritten
after each reading, IM shows also the last read word;

—Tastiera della Memoria (TM, memory keyboard, 18 vertical switches, under IM): used to bit-wise set
a word to be written in memory;

—Tastiera delle Istruzioni (TI, instruction keyboard, 18 vertical switches, under TM): used to bit-wise
set an instruction (e.g., in Figure 4, an unconditional jump instruction to the memory address 100 is
set on TI, bits 0 through 9 are the address, and bits 10 through 14 are the instruction code);

—Chiavi di Arresto Condizionato (CAC1/2/3, keys for conditional stop, 3 vertical switches, bottom left):
used to allow the program to stop at breakpoints defined in the program;

—Commutatori dei Modi di Funzionamento (switches for operating modes, 4 switches with two or three
positions, bottom centre, used in combination to set the MR in different operating modes), from left
to right: CNR (address switch), the memory address of the instruction operand is taken from the N
program counter or from the lower 10 bits of the R register; CRT (memory access switch) connects
the memory input to RE or to TM; CEI (instruction switch) connects the input of the instruction
register to TI (External instructions) or to memory (Internal instructions); CAIM (stepping options
switch) sets the MR to Automatic continuous execution (until program ends), or to manual step by
Instructions or Microinstructions;

—Pulsante di Avviamento (PA, start button, bottom right): used to enable the clock pulse generator
and thus to start the working cycle of the MR.

The QCM of the MR57 presents the typical characteristics of a machine from the 1950s: bit-wise
interaction, ability to execute machine instructions directly, information about the state of the machine
given through relevant registers, and every other interaction delegated to batch I/O of programs and
data through devices such as punched tape readers and teletypewriters.
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Facing such an interface, so different from today standards, people may feel how difficult it was
to work with the early computers. Unfortunately, this is the sort of immersion that makes them run
away. Popularizing computer science is a demanding task and requires some sort of tutoring. In our
experience, it is mandatory the presence of an entertainer who guides visitors in a walk-through,
presenting them with tasks of increasing difficulty.

5.2 Unveiling Mechanisms of Computer Technology

The very spartan MR57 user interface can be exploited to show the inner workings of a computer.
The basic mechanisms implemented in the MR57 are still present in modern computers; they are just
hidden under many layers of abstraction and user-friendliness.

A typical demonstration session with the MR57 simulator starts with the execution of single machine
instructions directly set on TI using 5 bits (10 through 14, counted starting from the right) for the
instruction code and 10 bits (0 through 9) for the operand, which usually is a memory address. For
instance, here are the detailed steps needed to use the MR as a counting machine:

—Set the first instruction on TI, the instruction code must be 0 (00000 in binary), corresponding to the
QM instruction that transfers the TM current value to a cell of memory, and the operand must be
the address of the cell used to store the value of the counter, say 0 (0000000000) for simplicity.

—Set the step value for the counter on TM; any number greater than zero will be fine.
—Check that CNR is set to the default position R (registro, register).
—Check that CRT is set to the default position T (temporizzatore, pulse generator).
—Set CEI to E (esterno, external) so that machine instructions are read from TI.
—Set CAIM to I (per istruzioni, by instructions) to execute a single instruction and stop.
—Check that the green light is on—that is, the MR57 is ready to start.
—Press PA; the MR57, executing the instruction on TI, loads the content of TM in memory and stops.
—IM now displays the value set on TM and currently stored in memory.
—Set another instruction on TI; the code must be 27 (11011), corresponding to the n + A instruction,

which loads the value of a memory cell in the register A; the operand must be left untouched so that
it still refers the counter address.

—Check the green light and press PA again; the MR copies the value from memory to the A register,
which now contains the step value of our counting machine; IM does not change as a memory read
operation was performed, but the binary value is the same of the previous write operation.

—Set the last instruction on TI; the code must be 7 (00111), corresponding to the A+M instruction,
which adds the value of A to a memory cell; again, the operand must be left untouched.

—Check the green light and press PA; the MR does a counting step, and IM displays the current value
of the counter.

—Keep pressing PA to continue counting.

The description of the preceding process is verbose, but in practice it does not require much time and
explains, through a practical example, many issues of computer internal architecture and mechanisms,
from the binary representation of both instructions and data to the role of memory and registers to
perform operations and store results.

The MR57 simulator is also accurate in the real-time reproduction of the machine performance.
Continuing the previous counter example, it is possible to perform a benchmark to assess the number
of additions that the MR57 executed per second, which is a common measure to express the speed of a
computer at the time. Provided that the counter step was set to 1:
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—Set CAIM to A (automatico, automatic) to continuously execute instructions.
—Leave CEI to E to always execute the instruction set on TI.
—Press PA and then watch the MR endlessly count and display the counter current value on IM.

It is enjoyable to watch the MR counting and displaying the counter value on IM, which progres-
sively increases, overflows, and then starts again. Although the lower bits change too fast, the cy-
cle is observable on the three to four most significant ones, and it is possible to invite the pub-
lic to manually mark the time between overflows. Considering that a full cycle requires 218 addi-
tions and using the average of few samples to mitigate the error of manual timing, it is easy to
guide people to record a performance of about 70,000 additions per second—a good runner for the
time.

A further step in the MR57 exploration is to run simple applications. Thanks to being able to directly
read a memory image from a punched tape, loading a program was quite an easy task on the MR57,
mostly a matter of careful handling of the paper tapes. However, once a program was read into the
memory, it was not obvious how to actually start it. The program is a sequence of instructions, and the
computer has to begin the execution of the program from its starting instruction—that is, it must jump
to the first instruction of the program. Today, it is all hidden behind a mouse click and the operating
system takes care of the details. On the MR57, the process is completely transparent, and the user is
responsible for doing all steps correctly. The user must know the address of the first instruction of the
program, and the loading procedure must be accordingly carried out:

—Set a jump on TI; the instruction code must be 16 (10000), corresponding to the Z instruction,
which is an unconditional jump, and the operand must be the address of the first instruction of
the program—say, for example, 100 (0001100100).

—Check that CNR and CRT are set to their defaults, R and T.
—Set CEI to E and CAIM to I.
—Check the green light and press PA; the MR57 executes the jump, and IN displays the new value of

the program counter, providing feedback that it now points to the first instruction of the program.
—Set CEI to I (interno, internal) so that the MR57 reads the instruction from its memory.
—Set CAIM to A.
—Check the green light and press PA; the program starts.

The procedures that we describe may seem a bit hard to be proposed to the general public. Depending
on the attending people, the simulator has to be presented at different levels. At the simpler level, it
helps to give a practical demonstration of a computer of the 1950s with all of its oddities. However,
when we consider teaching, the simulator has proven to be a valuable tool to make the lessons at the
museum more enjoyable. In particular, for middle- and high-school students (our primary target and
all “native gamers”) the simulator is able, after a while, to induce that sort of good addiction that
pushes many users to try more challenging tasks. As a matter of fact, we are proud that on more
than one occasion, young visitors have asked us to “step up” and proceed to the MR programming
workshop.

5.3 Introducing Basic Concepts of Computer Science

There are good reasons for using the MR as an example in the teaching workshops: it is a piece of
history (the first Italian computer, see Section 4.1), it is an interesting machine (see Section 4.2), and
it is simple enough that it can be presented to a general audience. We could have chosen the second
machine built in Pisa: it was not dismantled and is now on display at the museum. However, despite
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being built only 4 years after the MR, it is a much more complicated machine: it requires a lot of time
to be barely understood even for a computer scientist or an engineer. For example, it implemented
innovative (at the time) solutions for subroutine management that are very different from the classical
solutions that we are used to.

During a typical workshop session on the MR57, several programs are loaded and run. They are
written in a machine language that is simple yet elegant, having only 32 instructions with the same
one-word format—in modern terms, the MR57 is a pure reduced instruction set computing (RISC)
machine. Presenting the MR57 programs and discussing their implementation, having a look at the
code, is surprisingly possible even with people who have a basic computer science background. Some
examples derive from original code or adopt a similar programming style. As part of the immersion in
past software development techniques, examples are given of dirty tricks typical of programming in
great memory shortage.

During its short life, the MR57 was intensively used to provide computation services to research
projects ranging from physics to chemistry. However, these kinds of problems are too complex to be
presented to the public. To keep the audience’s attention, we had to make a compromise between
appealing software examples and pertinence with respect to the actual use of the MR57.

One of these examples is a game that turns the MR57 in a classical three-reel, eight-symbol slot
machine. The spinning reels are represented by the three middle bits of each of the three groups of
five bits in which IM is divided. The program starts with the usual jump procedure, then the user can
spin the reels by pressing PA and can stop them by lowering the first CAC bit, thus activating the
breakpoint with code 001. As usual, the jackpot is represented by a triple 7 (in binary a triple 111).
Although it may seems disrespectful of the much more relevant problems the MR57 was used for, this
simple game easy introduces the user interface of the MR57 and is a good starting point to present
some programming challenges of the time, and even to discuss deeper issues about foundations of
computer science.

User interaction. The slot machine game shows the use of the QCM as an I/O device. Playing the
game, it seems as though the MR57 is able to manage interactive I/O, but actually it is not. The MR57,
like most computers of its time, was a pure batch machine. Activating the breakpoint actually stops the
machine by inhibiting the generation of clock pulses, which are restarted when PA is pressed. In the
meantime, the machine is deadly stopped. Although effective for the sake of the game, the interaction
is not controlled by the program. The MR57 was able to perform active polling, but this was limited
to input through the TM keyboard on the QCM. First improvements in I/O management appeared in
those years in the most advanced projects, such as the MIT TX-2 computer that featured an early form
of synchronization by interrupts [Smotherman 1989].

Software hot topics of the 1950s. Random numbers generation has been a research topic since the
very beginning of the modern computing era [Von Neumann 1951]. The MR57 was actually used to ex-
periment with software random number generation, mostly for application in Monte Carlo integration
methods. The slot machine game uses a pseudorandom number generator to simulate the spinning
reels. The game source code is exploited both to introduce the topic and to show several solutions to
implement the generator subroutine.

Universal Turing machine. Among the different implementations of the generator subroutine, there
are few that rely on “recent” results. Indeed, the underlying math that makes the difference between
good and bad generators was not deeply investigated until the mid 1960s, and the debate lasted sev-
eral years [Park and Miller 1988]. In practice, in these cases, the MR57 is running a program that
belong to its future. This little paradox is used to point out the different timelines that characterize
hardware and software evolution, as well as to meditate on the universality of computers and to recall
fundamental concepts of computation such as Turing equivalence.

ACM Journal on Computing and Cultural Heritage, Vol. 7, No. 4, Article 21, Publication date: February 2015.



21:20 • G. A. Cignoni et al.

Fig. 5. A frame from Desk Set [Lang 1957].

5.4 Debunking Computer Representation in Pop Culture

For many years, the typical movie representation of a computer was based on blinking lights and
spinning tape reels. In recent times, tape reels have been substituted with bundles of network cables
and lot of monitors continuously scrolling text or plotting graphs.

In the mind of scriptwriters and set designers, these representations are aimed at depicting, for a
less experienced audience, complex machines that are working on some important task, thus the need
for moving parts (tape reels) or changing shapes (lights and monitors). Moreover, the task performed
must appear complicated yet intelligible to a well-trained user (usually a character in the drama), thus
the use of regular patterns of lights as well as graphs and text on monitors.

In Figure 5, a frame from the film Desk Set is shown—a 1957 classic Hollywood light comedy starring
Katharine Hepburn, Spencer Tracy, and the EMMARAC computer, which was fictional yet largely
inspired by machines of the period (IBM appears in the credits). The lady that operates Emma looks at
the light patterns like she is able to read them. This kind of representation is very common and lasted
even in masterpiece movies produced later and trying to imagine the computers in the future. One
paradigmatic example is Alien [Scott 1979], where the Mother computer is represented as a room full
of blinking lights. All of these representations are based on a realistic starting point: early computers
do have lights and spinning tape reels. However, as absurd as it may seem, a genuine computer of the
1950s would not have passed the audition for Desk Set.

The computer lights were not supposed to be read in real time. Although it was still possible to grasp
some information from the lights when the computer was running, their intended use was to display
register and memory status when the machine stopped.

The MR57 simulator was developed to accurately represent the behaviour of the special triodes used
for the QCM lights, and it can be used as a good example of the look and feel of a computer of the 1950s.
The QCM triodes had times of ionization and deionization of, respectively, 50 and 200 μs: for their
purpose, they were very fast and reactive lamps. However, having a clock cycle of 4 or 8 μs (depending
on the microinstruction), the MR57 was faster than its lights. The bit values normally changed too
fast for the triode to reach full ionization. When it happened (the bit stays on 1 for a while), the light
remained on due to the longer deionization time even if the bit was changed to 0. Thus, the QCM
lights were emitting an incomprehensible and flickering gleam: they were fully on or off only when the
machine stopped and the bit values remained constant.
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Besides being a curious anecdote and a good opportunity to speak about triodes, clock cycles, and
computer speed, the use of an accurate simulation helps to discuss the differences between what is
considered realistic because it is persuasive for common sense and what is actually true.

6. CONCLUSIONS AND FUTURE WORK

We witnessed two direct consequences of the MR rebuilding project so far. First of all, we can further
confirm that the experience of programming or just looking at (the simulation of) an old computer can
be a fruitful tool for teaching and popularizing computer science. Now improved with a graphical inter-
face, the MR simulators are exploited to show the look and feel of a computer of the 1950s, explaining
several fundamental concepts and mechanisms that still are at the base of the inner workings of com-
puters. The schools participating in the teaching workshops held at the museum were provided with
an immersive and fascinating experience in a past technology, which entices the kids to learn more
and deepen their understanding of the topics at hand in each workshop.

Modelling techniques and simulation tools were pivotal to support the research phase and to vali-
date our rebuilding hypotheses. Our experience also confirms that to rigorously approach the history
of technological artefacts, sound technology expertise is needed. The MR remained underestimated for
many years because the previous research did not attempt to recover and study the technical docu-
ments of the CEP project. On the contrary, the precise understanding of the technology of the time
that was needed to rebuild a virtual replica of the MR led to full acknowledgement of its prominent
role in the history of Italian computer science.

Current activities of the HMR project are aimed at extending the collection of programs used to show
the features of the MR and the kind of applications for which it was used. Furthermore, we are working
to improve the simulators of the MR I/O devices. Teletypewriters, tape readers, and tape punchers used
by the MR were borrowed from telegraphy. We plan to build independent simulators of such devices to
be connected to the virtual MR (thus acting as computer peripherals), as well as to be used to set up
simple networks to show how worldwide communications worked prior to the Internet.
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